首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is presented for the existence of a noncellulosic β-1,3-glucan in cotton fibers. The glucan can be isolated as distinct fractions of varying solubility. When fibers are homogenized rigorously in aqueous buffer, part of the total β-1,3-glucan is found as a soluble polymer in homogenates freed of cell walls. The proportion of total β-1,3-glucan which is found as the soluble polymer varies somewhat as a function of fiber age. The insoluble fraction of the β-1,3-glucan remains associated with the cell wall fraction. Of this cell wall β-1,3-glucan, a variable portion can be solubilized by treatment of walls with hot water, a further portion can be solubilized by alkaline extraction of the walls, and 17 to 29% of the glucan remains associated with cellulose even after alkaline extraction. A portion of this glucan can also be removed from the cell walls of intact cotton fibers by digestion with an endo-β-1,3-glucanase. The glucan fraction which can be isolated as a soluble polymer in homogenates freed of cell walls is not associated with membranous material, and we propose that it represents glucan which is also extracellular but not tightly associated with the cell wall. Enzyme digestion studies indicate that all of the cotton fiber glucan is β-linked, and methylation analyses and enzyme studies both show that the predominant linkage in the glucan is 1 → 3. The possibility of some minor branching at C-6 can also be deduced from the methylation analyses. The timing of deposition of the β-1,3-glucan during fiber development coincides closely with the onset of secondary wall cellulose synthesis. Kinetic studies performed with ovules and fibers cultured in vitro show that incorporation of radioactivity from [14C]glucose into β-1,3-glucan is linear with respect to time almost from the start of the labeling period; however, a lag is observed before incorporation into cellulose becomes linear with time, suggesting that these two different glucans are not polymerized directly from the same substrate pool. Pulse-chase experiments indicate that neither the β-1,3-glucan nor cellulose exhibits significant turnover after synthesis.  相似文献   

2.
Purified endoglucanases have been used to determine the composition of Schizosaccharomyces pombe cell wall. This structure has been traditionally studied after isolating its components (mannoproteins, alpha1,3-glucan, beta1,3-glucan, and a branched beta-glucan) with hot alkali. Instead, we sequentially removed the polysaccharides by digesting with endo-beta1,3-glucanase and with a novel endo-alpha1,3-glucanase (mutanase). After this gentle isolation we observed that a branched beta1,3-beta1,6-glucan is much more abundant than previously described. By scaling-up the new protocol we prepared large amounts of the highly branched glucan and determined its structural features. We have named this highly branched beta-glucan diglucan, reflecting its two types of beta linkages. We have also identified an insoluble endoglucanase-resistant type of 1,3-linked glucan present in S. pombe cell walls. We redefined the wall composition of S. pombe vegetative cells by this new method. Finally, to demonstrate its application, we determined the cell wall composition of known mutant strains.  相似文献   

3.
Glucans were isolated from the cell wall of the yeast (Y) and mycelial (M) forms of Paracoccidioides brasiliensis. The alkali-soluble glucan of the Y form had properties of alpha-1,3-glucan. The alkali-insoluble glucan of the M form was identified as a beta-glucan which contains a beta-(1 --> 3)-glycosidic linkage by infrared absorption spectrum, by effect of beta-1,3-glucanase, and by partial acid hydrolysis. The alkali-soluble glucans of the M form were a mixture of alpha- and beta-glucans and the ratio of alpha- to beta-glucan was variable, depending on the preparations.  相似文献   

4.
β-1,3-glucan is a major component of fungal cell walls with various biological activities, including effects on the production of inflammatory mediators in vivo and in vitro. However, few reports have examined its influence on the fungal cell itself. In this study, the influences of β-1,3-glucan on the growth and cell wall structure of fungi was examined. Aspergillus fumigatus was cultured with a synthetic medium, C-limiting medium, in the presence or absence of β-1,3-glucan. Hyphal growth was promoted in liquid and solid-cultures by adding β-1,3-glucan. Glucose and dextran did not induce growth. The influence on cell wall structure of the β-glucan-added cultures was examined by enzymolysis and NMR spectroscopy and the amount of β-1,3-glucan found to be changed. β-1,3-glucan has been widely detected in the environment. In this study, it was demonstrated that β-1,3-glucan causes promotion of the growth, and a change in the cell wall architecture, of Aspergillus. Unregulated distribution of β-1,3-glucan would be strongly related to the incidence of infectious diseases and allergy caused by Aspergillus spp.  相似文献   

5.
Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50-60% of the total mass of the wall. X-ray diffraction studies showed the presence of alpha-1, 3-glucan in the alkali-soluble cell wall fraction and of beta-1, 3-glucan and chitin in the alkali-insoluble fraction. Electron microscopy and lectin binding studies indicated that glycoproteins form an external layer covering an inner layer composed of chitin and glucan.  相似文献   

6.
The localization of the derepressible beta-1,3-glucanases of Penicillium italicum and the cell wall autolysis under conditions of beta-1,3-glucanase derepression (24 h in a low-glucose medium) were studied. About 15% of the total activity was secreted into the culture medium during the 24-h period and consisted of similar amounts of each of the three beta-1,3-glucanases (I, II, III) produced by this species. Treatment of derepressed mycelia with periplasmic enzyme-inactivating agents resulted in a loss of 45% of the mycelium-bound beta-1,3-glucanase. Analysis of periplasmic enzymes solubilized by 2 M NaCl or by autolysis of isolated cell walls revealed that only beta-1,3-glucanases II and III were bound to the cell wall. These two enzymes were capable of releasing in vitro reducing sugars from cell walls, whereas beta-1,3-glucanase I was not. In addition, the autolytic activity of cell walls isolated from derepressed mycelium was greater than that of cell walls isolated from repressed mycelium. The incubation of the fungus in the low-glucose medium also resulted in the in vivo mobilization of 34% of the cell wall beta-1,3-glucan, and this mobilization was fully prevented by cycloheximide, which also blocked derepression of beta-1,3-glucanases. Derepression of beta-1,3-glucanase seems to be coupled to the mobilization of cell wall glucan.  相似文献   

7.
The cell wall of the yeast form of Histoplasma farciminosum contains 13.2% beta-1,3-glucan, 1.0% galactomannan, and 25.8% chitin, whereas the cell wall of mycelial form has 21.8, 4.5, and 40%, respectively, for the same polymers. Also, the cell wall of the yeast form contains alpha-1,3-glucan (13.5%) and an unidentified polymer (21.5%). Chitin, one of the structural polymers of both yeast and mycelial cell walls, is identified as thin isolated fibers (4 nm wide) or in thick bundles (50 nm wide) of fibers. beta-(1-3)-Glucan is also found as thin isolated fibers indistinguishable from isolated fibers of chitin. Fibers 14 nm wide and resembling alpha-(1-3)-glucan fibers of other fungi are found in the yeast form. The results reported here do not give support to the proposal for a different taxonomic classification.  相似文献   

8.
Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50–60% of the total mass of the wall. X-ray diffraction studies showed the presence of α-1,3-glucan in the alkali-soluble cell wall fraction and of β-1,3-glucan and chitin in the alkali-insoluble fraction. Electron microscopy and lectin binding studies indicated that glycoproteins form an external layer covering an inner layer composed of chitin and glucan.  相似文献   

9.
The interface between plants and pathogens plays an important role in their interaction. Studies of fungal cell walls are scarce and previous results show the existence of α-1,3-glucans in addition to ß-glucans. In addition, α-1,3-glucans are not present in plant cell walls, and α-glucanase activity in plants has not been described before. In a previous work, we purified and characterized an α-1,3-glucan from a binucleated, non-pathogenic Rhizoctonia isolate, which induces plant defence responses. Therefore, in order to study the architecture of the fungal cell wall, and the accessibility and localization of the α-glucan elicitor, we prepared an antibody against the α-1,3-glucan and analysed its localization by TEM. Immunolocalization showed the presence of the α-1,3-glucan in the intercellular spaces and along the cell walls, mainly on the inner layers. This result, and the presence of the α-1,3-glucan in the liquid culture medium in which binucleated non-pathogenic Rhizoctonia was grown, confirmed that the α-glucan had been secreted. The α-1,3-glucan was also immunocytolocalized on potato sprouts tissue elicited with the glucan; gold particles were observed in vacuoles and close to the plasmalemma. In addition, α-glucanase activity in potato sprouts was detected using cell wall glucans from the pathogenic isolate R. solani AG-3 as substrates; whereas, when cell wall glucans from non-pathogenic isolates were used, no α-glucanase activity was detected. Our results suggest that the presence of α-1,3-glucans could be associated with the formation and integrity of the cell wall and also with plant–fungi interactions. This is the first report to describe α-glucanolytic activity in plants.  相似文献   

10.
A morphological mutant of Neurospora crassa, which showed great changes in cell wall β-glucan structures, was obtained. The mutant lacked spore-forming ability. Chemical analysis indicated that the mutant cell walls had more carbohydrates and less proteins than the wild type. In the structural polymers of cell walls, heteroglycan and chitin were not apparently changed in their sugar composition and structures. On the other hand, the alkali-soluble β-glucan of this mutant showed significant changes in the chemical structure, particularly, the number and length of branches. The mutant glucan had about 2.5 times as many branches as that from wild type and the number of 1,3-linked glucose residues was greatly reduced.  相似文献   

11.
The yeast cell wall contains beta1,3-glucanase-extractable and beta1,3-glucanase-resistant mannoproteins. The beta1,3-glucanase-extractable proteins are retained in the cell wall by attachment to a beta1,6-glucan moiety, which in its turn is linked to beta1,3-glucan (J. C. Kapteyn, R. C. Montijn, E. Vink, J. De La Cruz, A. Llobell, J. E. Douwes, H. Shimoi, P. N. Lipke, and F. M. Klis, Glycobiology 6:337-345, 1996). The beta1,3-glucanase-resistant protein fraction could be largely released by exochitinase treatment and contained the same set of beta1,6-glucosylated proteins, including Cwp1p, as the B1,3-glucanase-extractable fraction. Chitin was linked to the proteins in the beta1,3-glucanase-resistant fraction through a beta1,6-glucan moiety. In wild-type cell walls, the beta1,3-glucanase-resistant protein fraction represented only 1 to 2% of the covalently linked cell wall proteins, whereas in cell walls of fks1 and gas1 deletion strains, which contain much less beta1,3-glucan but more chitin, beta1,3-glucanase-resistant proteins represented about 40% of the total. We propose that the increased cross-linking of cell wall proteins via beta1,6-glucan to chitin represents a cell wall repair mechanism in yeast, which is activated in response to cell wall weakening.  相似文献   

12.
Glucosyltransferase-I (GTF-I: 175 kDa) of a cariogenic bacterium, Streptococcus sobrinus 6715, mediates the conversion of water-soluble dextran (alpha-1,6-glucan) into a water-insoluble form by making numerous alpha-1,3-glucan branches along the dextran chains with sucrose as the glucosyl donor. The structures and catalytic properties were compared for two GTF-I fragments, GTF-I' (138 kDa) and GS (110 kDa). Both lack the N-terminal 84 residues of GTF-I. While GTF-I' still contains four of the six C-terminal repeats characteristic of streptococcal glucosyltransferases, GS lacks all of them. Electron microscopy of negatively stained samples indicated a double-domain structure for GTF-I', consisting of a spherical head with a smaller spherical tail, which was occasionally seen as a long extension. GS was seen just as the head portion of GTF-I'. In the absence of dextran, both fragments simply hydrolyzed sucrose with similar K(m) and k(cat) values at low concentrations (<5 mM). At higher sucrose concentrations (>10 mM), however, GTF-I' exhibited glucosyl transfer activity to form insoluble alpha-1, 3-glucans. So did GS, but less efficiently. Dextran increased the rate and efficiency of the glucosyl transfer by GTF-I'. On removal of the C-terminal repeats of GTF-I' by mild trypsin treatment, this dextran-stimulated transfer was completely lost and the dextran-independent transfer became less efficient. These results indicate that the N-terminal two-thirds of the GTF-I sequence are organized as a structurally and functionally independent domain to catalyze not only sucrose hydrolysis but also glucosyl transfer to form alpha-1,3-glucan chains, although not efficiently; the C-terminal repeat increases the efficiency of the intrinsic glucosyl transfer by the N-terminal domain as well as rendering the whole molecule primer-dependent for far more efficient insoluble glucan synthesis.  相似文献   

13.
Conidial walls of wild-type and white mutantAspergillus nidulans were purified. Chemical analysis showed that the conidial wall of the wild-type strain contained neutral carbohydrate, protein, chitin, melanin, and small amounts of lipid. The neutral sugars were glucose, galactose, and mannose. Chemical fractionation experiments indicated the presence of -1,3-glucan in the wild-type conidial wall. The conidial wall of the white mutant strain lacked melanin and -1,3-glucan, and contained twice as much galactose as that of the wild-type strain. The protein(s) of the white mutant wall contained fifteen amino acids. Transmission electron microscopy showed that the wild-type conidial wall was composed of an electron-dense outer layer, irregular in thickness and containing the -1,3-glucan, an electron-translucent middle layer, and a thin inner layer intimately associated with the plasma membrane. Conidial walls of the white mutant strain lacked the electron-dense outer layer.  相似文献   

14.
Cell walls isolated from Lolium multiflorum endosperm grown in liquid suspension culture contain 90% carbohydrate (as anhydro-glucose), 0·3 nitrogen, 1·9% lipid and 4·3% ash. The relative proportions of neutral sugars present in hydrolysates of the wall polysaccharides are glucose, 50%; arabinose, 19%; xylose, 26% and galactose, 5%. Extraction of the wall with 7 M urea solubilizes a polysaccharide representing 19% of the wall and composed of glucose and minor amounts of pentoses. This fraction has been examined by acid and enzymic hydrolysis and by periodate oxidation, and was shown to be a β-1,3; 1,4-glucan with approx. 79% 1,4-linkages. A specific β-glucan hydrolase has been used to determine the content of this mixed-linked glucan in isolated endosperm cell walls.  相似文献   

15.
Abstract The water-insolubilization mechanism of exogenous primer dextran with 1,3-α- d -glucan synthase (EC 2.4.1.-) from Streptococcus mutans was studied. The 1,3-α- d -glucan synthase solution, containing sucrose and exogenous primer dextran, was incubated briefly. Water-insoluble glucan was synthesized. At the same time, water-soluble glucan, mainly derived from exogenous primer dextran, decreased. Linkage analysis data of glucan produced revealed that 1,3-α- d -glucoside bonds increased. Exogenous primer dextran was changed by the action of 1,3-α- d -glucan synthase to water-insoluble glucan. The results suggest that in a short-term reaction system of outside primer-insertion type, the 1,6-α- d -glucoside bond forms the main chain of water-insoluble glucan.  相似文献   

16.
Histoplasma capsulatum is a dimorphic fungus that causes respiratory and systemic disease and is capable of surviving and replicating within macrophages. The virulence of Histoplasma has been linked to cell wall alpha-(1,3)-glucan; however, the role of this polysaccharide during infection, its organization within the cell wall, and its synthesis and regulation remain poorly understood. To identify genes involved in the biosynthesis of alpha-(1,3)-glucan, we employed a forward genetics strategy to isolate physically marked mutants with reduced alpha-(1,3)-glucan. Insertional mutants were generated in a virulent strain of H. capsulatum by optimization of Agrobacterium tumefaciens-mediated transformation. Approximately 90% of these mutants possessed single insertions with no chromosomal rearrangements or deletions in the host genome. To confirm the role and specificity of identified candidate genes, we phenocopied the disrupted locus by either RNA interference or targeted gene deletion. Our findings indicate alpha-(1,3)-glucan production requires the function of the AMY1 gene product, a novel protein with homology to the alpha-amylase family of glycosyl hydrolases, and UGP1, a UTP-glucose-1-phosphate uridylyltransferase which synthesizes UDP-glucose monomers. Loss of AMY1 function attenuated the ability of Histoplasma to kill macrophages and to colonize murine lungs.  相似文献   

17.
Chemical analysis indicated that D-glucose is tha major neutral monosaccharide present in the microcysts of a range of gram-negative bacteria. Varying amounts of other neutral sugars were found. The glucose was mainly present as a glucan that could be extracted from microcysts of representative strains with alkali or mild acid treatment. The glucan could be identified as an alpha-1,3-linked polymer on the basis of (i) periodate resistance of the extracted polymer and the material present in microcysts; (ii) lectin agglutination of the microcysts; (iii) lectin precipitation of the extracted glucans; and (iv) susceptibility of the glucan either in the walls or after extraction to a specific alpha-1,3-glucanase from Aspergillus nidulans, yielding glucose as the sole hydrolysis product. The galactosamine found in microcysts of Myxococcus xanthus by other workers is clearly a component of another polymer, distinct from the glucan. The presence of an alpha 1,3-linked glucan, common to microcyst walls of various bacterial genera, probably contributes to the rigidity of the walls of these forms and, inter alia, to their resistance to ultrasonic treatment. Preliminary experiments indicate that the gulcan is discarded on germination of the microcysts rather than being broken down by specific enzymes.  相似文献   

18.
Histoplasma capsulatum strains can be classified into two chemotypes based on cell wall composition. The cell wall of chemotype II yeast contains a layer of α-(1,3)-glucan that masks immunostimulatory β-(1,3)-glucans from detection by the Dectin-1 receptor on host phagocytes. This α-(1,3)-glucan cell wall component is essential for chemotype II Histoplasma virulence. In contrast, chemotype I yeast cells lack α-(1,3)-glucan in vitro, yet they remain fully virulent in vivo. Analysis of the chemotype I α-glucan synthase (AGS1) locus revealed a 2.7-kb insertion in the promoter region that diminishes AGS1 expression. Nonetheless, AGS1 mRNA can be detected during respiratory infection with chemotype I yeast, suggesting that α-(1,3)-glucan could be produced during in vivo growth despite its absence in vitro. To directly test whether AGS1 contributes to chemotype I strain virulence, we prevented AGS1 function by RNA interference and by insertional mutation. Loss of AGS1 function in chemotype I does not impair the cytotoxicity of ags1(-) mutant yeast to cultured macrophages, nor does it affect the intracellular growth of yeast. In a murine model of histoplasmosis, the ags1(-) chemotype I mutant strains show no defect in lung infection or in extrapulmonary dissemination. Together, these studies demonstrate that AGS1 expression is dispensable for chemotype I yeast virulence, in contrast to the case for chemotype II yeast. Despite the absence of cell wall α-(1,3)-glucan, chemotype I yeast can avoid detection by Dectin-1 in a growth stage-dependent manner. This suggests the production of a unique Histoplasma chemotype I factor that, at least partially, circumvents the α-(1,3)-glucan requirement for yeast virulence.  相似文献   

19.
We have previously shown that mutants in the cardiolipin (CL) pathway exhibit temperature-sensitive growth defects that are not associated with mitochondrial dysfunction. The pgs1Delta mutant, lacking the first enzyme of the CL pathway, phosphatidylglycerolphosphate synthase (Pgs1p), has a defective cell wall due to decreased beta-1,3-glucan (Zhong, Q., Gvozdenovic-Jeremic, J., Webster, P., Zhou, J., and Greenberg, M. L. (2005) Mol. Biol. Cell 16, 665-675). Disruption of KRE5, a gene involved in cell wall biogenesis, restores beta-1,3-glucan synthesis and suppresses pgs1Delta temperature sensitivity. To gain insight into the mechanisms underlying the cell wall defect in pgs1Delta, we show in the current report that pgs1Delta cells have reduced glucan synthase activity and diminished levels of Fks1p, the glucan synthase catalytic subunit. In addition, activation of Slt2p, the downstream effector of the protein kinase C (PKC)-activated cell integrity pathway, was defective in pgs1Delta. The kre5W1166X suppressor restored Slt2p activation and dramatically increased (>10-fold) mRNA levels of FKS2, the alternate catalytic subunit of glucan synthase, partially restoring glucan synthase activity. Consistent with these results, up-regulation of PKC-Slt2 signaling and overexpression of FKS1 or FKS2 alleviated sensitivity of pgs1Delta to cell wall-perturbing agents and restored growth at elevated temperature. These findings demonstrate that functional Pgs1p is essential for cell wall biogenesis and activation of the PKC-Slt2 signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号