首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presentation of doxorubicin in liposomes has shown to enhance the sensitivity of multidrug resistant CH LZ cells to the drug (Thierry et al. Cancer Commun. 1:311-316, 1989). We confirmed that liposomally encapsulated doxorubicin may partially overcome multidrug resistance in the human ovarian carcinoma SKVLB cell line and that this effect is, at least in part, due to an increase of cellular drug accumulation. When used at high concentration, empty liposomes appear to be specifically cytotoxic in the MDR SKVLB and CH LZ cells. As observed with certain multidrug resistance modulators, empty liposomes inhibited the specific [3H]-vincristine binding to P-glycoprotein-enriched membranes isolated from CH LZ cells (60% at 0.2 mg lipid/ml). Our data suggest that liposomes may alter the P-glycoprotein function by direct interaction.  相似文献   

2.
The MDR1 multidrug resistance gene encodes a high molecular weight membrane-spanning cell surface protein, P-glycoprotein, that confers multidrug resistance by pumping various cytotoxic drugs, including vinblastine, doxorubicin or paclitaxel, out of cells. Overexpression of P-glycoprotein in human tumors has been recognized as a major obstacle for successful chemotherapy of cancer. Thus, P-glycoprotein represents an important drug target for pharmacological chemosensitizers. Initially, cell culture models to study the multidrug resistance phenotype were established by selecting drug-sensitive cells in step-wise increasing, sublethal concentrations of chemotherapy agents. P-glycoprotein was found to be overexpressed in many of these models. Multidrug resistant cells can also be generated by transfection of cultured cells with the MDR1 gene, followed by selection with cytotoxic drug at a concentration that kills all untransfected host cells. Transfectants expressing wild-type or mutant recombinant P-glycoprotein have significantly contributed to our understanding of the structure of P-glycoprotein and its molecular and cellular functions. Additionally, the MDR1 gene has also been used as a selectable marker for the transfer and coexpression of non-selectable genes. This article details means for detection of P-glycoprotein in DNA-transfected or retrovirally transduced, cultured cells. Different experimental approaches are described that make use of specific antibodies for detection of P-glycoprotein. Strategies to visualize P-glycoprotein include metabolic labeling using 35S-methionine, labeling with a radioactive photoaffinity analog, and non-radioactive immunostaining after Western blotting.  相似文献   

3.
The overexpression of P-glycoprotein (P-gp, ABCB1) in cancer cells often leads to multidrug resistance (MDR) through reduced drug accumulation. However, certain P-gp-positive cells display hypersensitivity, or collateral sensitivity, to certain compounds that are believed to induce Pgp-dependent oxidative stress. We have previously reported that MDR P-gp-positive CHO cells are collaterally sensitive to verapamil (VRP; Laberge et al. (2009) [1]). In this report we extend our previous findings and show that drug resistant CHO cells are also collaterally sensitive to physiologic levels of progesterone (PRO) and deoxycorticosterone (DOC). Both PRO and DOC collateral sensitivities in CHRC5 cells are dependent on P-gp-expression and ATPase, as knockdown of P-gp expression with siRNA or inhibition of P-gp-ATPase with PSC833 reverses PRO- and DOC-induced collateral sensitivity. Moreover, the mitochondrial complexes I and III inhibitors (antimycin-A and rotenone, respectively) synergize with PRO and DOC-induced collateral sensitivity. We also show that VRP inhibits PRO and DOC collateral sensitivity, consistent with earlier findings relating to the VRP’s modulation of PRO and DOC-stimulation of P-gp ATPase. The findings of this study demonstrate a P-gp-dependent collateral sensitivity of MDR cells in the presence of physiologically achievable concentrations of progesterone and deoxycorticosterone.  相似文献   

4.
Two photoactive radiolabeled analogs of colchicine, N-(p-azido[3,5-[3H]benzoyl)aminohexanoyldeacetylcolchicine ([3H]NABC]) and N-(p-azido-[3-125I]salicyl)aminohexanoyldeacetylcolchicine ([125I]NASC) were synthesized and used to identify colchicine-specific acceptor(s) in membrane vesicles from multidrug resistant (MDR) variant DC-3F/VCRd-5L Chinese hamster lung cells. Both [3H]NABC and [125I]NASC specifically photolabeled a prominent 150-180 kDa polypeptide in membrane vesicles from DC-3F/VCRd-5L cells. The photolabeled polypeptide was immunoprecipitated by monoclonal antibody C219 specific for the MDR-related P-glycoprotein (P-gp) indicating the identity of this protein with P-gp. Colchicine at 1000 microM reduced [3H]NABC photolabeling of P-gp by 72%. Furthermore, 100 microM of colchicine, vincristine, vinblastine, doxorubicin and actinomycin D inhibited [125I]NASC photolabeling by 45, 88.8, 91.1, 61.5, and 51% respectively. However, methotrexate did not affect the [125I]NASC photolabeling of P-gp, indicating the multidrug specificity of the P-gp colchicine acceptor for drugs to which these cells are resistant.  相似文献   

5.
P-glycoprotein is a plasma membrane efflux pump which is responsible for multidrug resistance of many cancer cell lines. A number of studies have demonstrated the presence of P-glycoprotein molecules, besides on the plasma membrane, also in intracellular sites, such as the Golgi apparatus and the nucleus. In this study, the presence and function of P-glycoprotein in the nuclear membranes of human breast cancer cells (MCF-7 WT) and their multidrug resistant variants (MCF-7 DX) were investigated. Electron and confocal microscopy immunolabelling experiments demonstrated the presence of P-glycoprotein molecules in the nuclear membranes of MCF-7 DX cells. Moreover, the labelling pattern was strongly dependent on pH values of the incubation buffer. At physiological pH (7.2), a strong labelling was detected in the cytoplasm and the nuclear matrix in both sensitive and resistant MCF-7 cells. By raising the pH to 8.0, the P-glycoprotein molecules were easily detected in the cytoplasm (transport vesicles and Golgi apparatus), plasma and nuclear membranes exclusively in MCF-7 DX cells. Furthermore, drug uptake and efflux studies, performed by flow cytometry on isolated nuclei in the presence of the P-glycoprotein inhibitor cyclosporin A, suggested the presence of a functional P-glycoprotein in the nuclear membrane, but not in the nuclear matrix, of drug resistant cells. Therefore, P-glycoprotein in the nuclear envelope seems to represent a further defense mechanism developed by resistant cells against antineoplastic agents.  相似文献   

6.
The role of cellular interactions in the resistance of Djungurian hamster cells to colchicine (CH) and in the efficiency of P-glycoprotein function was studied. Mixtures of CH-resistant and CH-sensitive cells as well as control unmixed cells were propagated for 3 days and the sensitivity of the cells to CH was measured by colony forming assay. Identification of individual subpopulations was possible due to genetic marker (6TG-resistance). The data show that the survival of CH-sensitive cells in CH-supplemented medium increased after co-cultivation with CH-resistant counterparts. To measure Pgp activity the fluorescent dye RH123 and FACScan analysis were used. Pgp-mediated RH123 efflux increased after co-cultivation of CH-sensitive and CH-resistant cells.  相似文献   

7.
Multidrug resistance (MDR) refers to the cross-resistance of cancer cells to one drug, accompanied by other drugs with different mechanisms and structures, which is one of the main obstacles of clinical chemotherapy. Overexpression of P-glycoprotein (P-gp) was an extensively studied cause of MDR. Therefore, inhibiting P-gp have become an important strategy to reverse MDR. In this study, two series of triazole-tetrahydroisoquinoline-core P-gp inhibitors were designed and synthesized. Among them, compound I-5 had a remarkable reversal activity of MDR activity and the preliminary mechanism study was also carried out. All the results proved that compound I-5 was considered as a promising P-gp-mediated MDR reversal candidate.  相似文献   

8.
Studies were undertaken to identify the protein kinase(s) responsible for P-glycoprotein phosphorylation in multidrug-resistant (KB-V1) human carcinoma cells and to elucidate the functional role of phosphorylation. P-glycoprotein migrated on sodium dodecyl sulfate gels with apparent Mr 150,000 and is termed P150. When KB-V1 membrane vesicles were incubated with [gamma-32P] ATP, P150 was phosphorylated by an endogenous kinase that exhibited properties of membrane-inserted protein kinase C (PKC). Both membrane-bound P150 and purified P150 served as effective substrates for highly purified rat brain PKC which incorporated approximately 0.6 mol of phosphate/mol of P150. Enzyme assays showed that KB-V1 cells exhibit 4-fold higher PKC activity compared with the drug-sensitive KB-3 cell line. The basal phosphorylation of P150 observed in 32P-labeled cells was increased 2-fold by phorbol ester (PMA) treatment and reduced 30% by treatment with the isoquinolinsulfonamide H-7. Phosphopeptide maps of partially digested P150, phosphorylated either in vitro with PKC or in intact 32P-labeled control or PMA-stimulated cells, were indistinguishable from one another. Drug accumulation assays revealed that PMA treatment of KB-V1 cells significantly reduced [3H]vinblastine accumulation induced by verapamil or by tetrandrine. The results suggest that PKC is primarily responsible for P150 phosphorylation in KB-V1 cells and that phosphorylation may play a modulatory role in the drug transport process.  相似文献   

9.
To determine the number of drug binding sites that exist on the multidrug transporter, P-glycoprotein, we used azidopine, a dihydropyridine photoaffinity compound that reverses multidrug resistance and labels P-glycoprotein. Azidopine labels P-glycoprotein in two distinct locations: one labeled site is within the amino half of P-glycoprotein between amino acid residues 198 and 440, and the other site is within the carboxy half of the protein. Vinblastine is a cytotoxic drug that is used in cancer chemotherapy and is a substrate for transport by P-glycoprotein. We found that vinblastine inhibits azidopine labeling to approximately the same extent at each labeled site on P-glycoprotein. Because several studies have shown that amino acid residue 185 of P-glycoprotein plays a critical role in some aspects of drug binding and transport, we also studied the effect that amino acid residue 185 has on azidopine labeling. These studies show that azidopine labels both sites equivalently in both wild-type (G185) and mutant (V185) P-glycoproteins. We conclude from our results that the two halves of P-glycoprotein approach each other to form a single binding site for these drugs.  相似文献   

10.
The multidrug resistance (MDR) is one of the main reasons for chemotherapeutic failures in cancer patients. The overexpression of mdr1 gene product, P-glycoprotein (Pgp), leads to the appearance of resistant tumor cells. In the previous paper (Erokhina, 1997) we have demonstrated that the first stages of Pgp-mediated MDR are accompanied by the reorganization of cytoskeleton elements and the vacuolar system. These data were true for two independently isolated sublines of Syrian hamster embryo fibroblasts transformed by Raus sarcoma virus. In this study, we continued the investigation of the properties of the vacuolar system in Pgp-expressing cells. Brefeldin A (BFA), which is not a Pgp substrate, affects different elements of the vacuolar system and blocks vesicular transport. Our data demonstrate that BFA has different effects on parental and resistant cells. In parental cells, the Golgi apparatus and vesicular transport are sensitive to BFA, while in resistant sublines, BFA affects the vesicular transport but not the Golgi apparatus structure. We discuss the existence of similar and different BFA targets in parental and resistant cells and their role in the evolution of multidrug resistance mechanisms.  相似文献   

11.
A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with35S-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170–180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.  相似文献   

12.
MDR has been studied extensively in mammalian cell lines. According to usual practice, the MDR phenotype is characterized by the following features: cross resistance to multiple chemotherapeutic agents (lipophilic cations), defective intracellular drug accumulation and retention, overexpression of P-gp (often accompanied by gene amplification), and reversal of the phenotype by addition of calcium channel blockers. An hypothesis for the function of P-gp has been proposed in which P-gp acts as a carrier protein that actively extrudes MDR compounds out of the cells. However, basic questions, such as what defines the specificity of the pump and how is energy for active efflux transduced, remain to be answered. Furthermore, assuming that P-gp acts as a drug transporter, one will expect a relationship between P-gp expression and accumulation defects in MDR cell lines. A review of papers reporting 97 cell lines selected for resistance to the classical MDR compounds has revealed that a connection exists in most of the reported cell lines. However, several exceptions can be pointed out. Furthermore, only a limited number of well characterized series of sublines with different degrees of resistance to a single agent have been reported. In many of these, a correlation between P-gp expression and transport properties can not be established. Co-amplification of genes adjacent to the mdr1 gene, mutations [122], splicing of mdr1 RNA [123], modulation of P-gp by phosphorylation [124] or glycosylation [127], or experimental conditions [26,78] could account for some of the complexity of the phenotype and the absence of correlation in some of the cell lines. However, both cell lines with overexpression of P-gp without increased efflux [i.e., 67,75] and cell lines without P-gp expression and accumulation defects/increased efflux [i.e., 25,107] have been reported. Thus, current results from MDR cell lines contradict--but do not exclude--that P-gp acts as multidrug transporter. Other models for the mechanism of resistance have been proposed: (1) An energy-dependent permeability barrier working with greater efficacy in resistant cells. This hypothesis is supported by studies of influx which, although few, all except one demonstrate decreased influx in resistant cells; (2) Resistant cells have a greater endosomal volume, and a greater exocytotic activity accounts for the efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
《Phytomedicine》2015,22(2):301-307
Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents.  相似文献   

14.
We have cloned from a chicken intestinal cDNA library Cmdr1, the first avian P-glycoprotein. Cmdr1 is 67% and 69% identical to proteins encoded by the human MDR1 and MDR2 genes, respectively. Functional expression of Cmdr1 in both mouse NIH 3T3 and yeast cells demonstrated that Cmdr1 represents the avian ortholog of human Mdr1, since it confers resistance to several anticancer drugs and the fluorescent dye rhodamine 6G. Northern and immunoblot analysis showed that CMDR1 is highly expressed throughout the intestine and in the liver, and to a considerable extent in kidney, brain, lung, heart, eye and follicles. In situ hybridization revealed a cell type-specific expression of CMDR1 in the intestinal epithelium, with high levels in the villi of the small and large intestine as well as crypt cells. These data suggest that Cmdr1 could play a role in intestinal detoxification. Most interestingly, immunoblotting showed that Cmdr1 is also expressed in ovarian tissues, particularly in theca cells, the major site for ovarian estrogen production in birds. Indeed, competition experiments indicated that Cmdr1 interacts with estradiol, since rhodamine 6G efflux was efficiently blocked by estradiol in NIH 3T3 cells expressing Cmdr1. Rhodamine efflux was also blocked by PSC-833, a specific inhibitor of steroid-transporting P-glycoproteins from mammalian cells. We propose that Cmdr1 in ovarian cells could be involved in the cell type-specific transport or release of estrogen that is essential for avian follicular development.  相似文献   

15.
Multidrug resistance is a major obstacle for the successful use of chemotherapy. The multidrug resistance phenotype is often attributed to overexpression of P-glycoprotein, which is an energy-dependent drug efflux pump. We investigated a new strategy to overcome multidrug resistance, using purified bovine serum amine oxidase, which generates two major toxic products from the polyamine spermine. The cytotoxicity of the aldehyde(s) and H2O2, produced by the enzymatic oxidation of micromolar concentrations of spermine, was evaluated in multidrug resistant Chinese hamster ovary cells CHRC5 with overexpression of P-glycoprotein, using a clonogenic cell survival assay. We examined the ability of hyperthermia (42 degrees C), and inhibition of cellular detoxification systems, to sensitize multidrug resistant cells to spermine oxidation products. Severe depletion of intracellular glutathione was achieved using L-buthionine sulfoximine and inhibition of glutathione S-transferase by ethacrynic acid. CH(R)C5 cells showed no resistance to the toxic oxidation products of spermine, relative to drug-sensitive AuxB1 cells. Exogenous catalase protected cells against cytotoxicity of H2O2, but spermine-derived aldehyde(s) still caused some cytotoxicity. Hyperthermia (42 degrees C) enhanced cytotoxicity of spermine oxidation products. Cytotoxic responses in CH(R)C5 cells were compared to the drug-sensitive cells, to determine whether there are differential responses. CH(R)C5 cells were more sensitive to the cytotoxic effect of spermine oxidation products under more extreme conditions (higher temperature, higher spermine concentration, and longer exposure time). Glutathione depletion or glutathione S-transferase inhibition also led to enhanced cytotoxicity of spermine oxidation products in CH(R)C5 and AuxB1 cells. Our findings suggest that hyperthermia, combined with toxic oxidation products generated from spermine and amine oxidase, could be useful for eliminating drug-sensitive and multidrug resistant cells.  相似文献   

16.
17.
Starting from the interaction of galangin (3,5,7-trihydroxyflavone) with a cytosolic nucleotide-binding domain of P-glycoprotein, a series of flavonol derivatives was synthesized and tested for their binding affinity towards the same target. The 5,7-dihydroxy-4'-iodoflavonol and 5,7-dihydroxy-4'-n-octylflavonol derivatives displayed much higher binding affinities, with respective increases of 6- and 93-fold as compared to galangin.  相似文献   

18.
Inhibition of P-glycoprotein by cyclosporin A analogues and metabolites.   总被引:2,自引:0,他引:2  
The interaction between P-glycoprotein (P-gp) from membranes isolated from multidrug-resistant Chinese hamster ovary cells and cyclosporin A (CsA) analogues and its metabolites was characterized. Screening of these latter as chemosensitizers was performed using three different assays: (i) vinblastine uptake, (ii) photoaffinity labeling by [125I]iodoaryl azidoprazosin, and (iii) P-gp ATPase activity. Oxidation of the hydroxyl group at position I of CsA (200-096), CsG (215-834), or CsD (PSC-833) increased their inhibition of P-gp. CsA analogues (208-032, 208-183) modified at position 11 retained their ability to inhibit P-gp while analogues modified at position 2 (CsC and CsD) lost their efficiency. The inhibitions induced by metabolites of CsA were also compared to those obtained with CsG metabolites. From all the molecules tested, PSC-833 and 280-446 peptolide were the strongest inhibitors. Our results indicate that modifications of CsA analogues at position 1 and 2 are critical for their interaction with P-gp and that CsA metabolites retain a portion of the inhibitory activity of the parent drug.  相似文献   

19.
Multidrug-resistant cells are characterized by the presence of P-glycoprotein on the plasma membrane, which binds and probably transports antitumor agents outside the cells. P-glycoprotein is also present in various normal tissues such as the adrenal gland. To investigate the physiological function of P-glycoprotein, we examined possible endogenous materials which inhibit the binding of vincristine to the resistant cell membrane. The binding was inhibited by steroid hormones, most efficiently by progesterone. Progesterone also reduced the photoaffinity labeling of P-glycoprotein by a photoactive analogue of vindesine. These results suggest that P-glycoprotein in the adrenal gland could have a role in the secretion of steroid hormones.  相似文献   

20.
Electron spin resonance (ESR) spectroscopy using spin-labeled ATP was used to study nucleotide binding to and structural transitions within the multidrug resistance P-glycoprotein, P-gp. Spin-labeled ATP (SL-ATP) with the spin label attached to the ribose, was observed to be an excellent substrate analogue for P-gp. SL-ATP was hydrolyzed in a drug-stimulated fashion at about 14% of the rate for normal ATP and allowed reversible trapping of the enzyme in transition and ground states. Equilibrium binding of a total of two nucleotides per P-gp was observed with a binding affinity of 366 microM in the presence of Mg2+ but in the absence of transport substrates such as verapamil. Binding of SL-ATP to wild-type P-gp in the presence of verapamil resulted in reduction of the protein-bound spin-label moiety, most likely due to a conformational transition within P-gp that positioned cysteines in close proximity to the spin label to allow chemical reduction of the radical. We circumvented this problem by using a mutant of P-gp in which all naturally occurring cysteines were substituted for alanines. Equilibrium binding of SL-ATP to this mutant P-gp resulted in maximum binding of two nucleotides; the binding affinity was 223 microM in the absence and 180 microM in the presence of verapamil. The corresponding ESR spectra of wild-type and Cys-less P-gp in the presence of SL-ATP indicate that a cysteine side chain of P-gp is located close to the ribose of the bound nucleotide. Trapping SL-ATP as an AlF(x)-adduct resulted in ESR spectra that showed strong immobilization of the radical, supporting the formation of a closed conformation of P-gp in its transition state. This study is the first to employ ESR spectroscopy with the use of spin-labeled nucleotide analogues to study P-glycoprotein. The study shows that SL-ATP is an excellent substrate analogue that will allow further exploration of structure and dynamics within the nucleotide binding domains of this important enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号