首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xu H  West AH  Cook PF 《Biochemistry》2006,45(39):12156-12166
Kinetic data have been measured for the histidine-tagged saccharopine dehydrogenase from Saccharomyces cerevisiae, suggesting the ordered addition of nicotinamide adenine dinucleotide (NAD) followed by saccharopine in the physiologic reaction direction. In the opposite direction, the reduced nicotinamide adenine dinucleotide (NADH) adds to the enzyme first, while there is no preference for the order of binding of alpha-ketoglutarate (alpha-Kg) and lysine. In the direction of saccharopine formation, data also suggest that, at high concentrations, lysine inhibits the reaction by binding to free enzyme. In addition, uncompetitive substrate inhibition by alpha-Kg and double inhibition by NAD and alpha-Kg suggest the existence of an abortive E:NAD:alpha-Kg complex. Product inhibition by saccharopine is uncompetitive versus NADH, suggesting a practical irreversibility of the reaction at pH 7.0 in agreement with the overall K(eq). Saccharopine is noncompetitive versus lysine or alpha-Kg, suggesting the existence of both E:NADH:saccharopine and E:NAD:saccharopine complexes. NAD is competitive versus NADH, and noncompetitive versus lysine and alpha-Kg, indicating the combination of the dinucleotides with free enzyme. Dead-end inhibition studies are also consistent with the random addition of alpha-Kg and lysine. Leucine and oxalylglycine serve as lysine and alpha-Kg dead-end analogues, respectively, and are uncompetitive against NADH and noncompetitive against alpha-Kg and lysine, respectively. Oxaloacetate (OAA), pyruvate, and glutarate behave as dead-end analogues of lysine, which suggests that the lysine-binding site has a higher affinity for keto acid analogues than does the alpha-Kg site or that dicarboxylic acids have more than one binding mode on the enzyme. In addition, OAA and glutarate also bind to free enzyme as does lysine at high concentrations. Glutarate gives S-parabolic noncompetitive inhibition versus NADH, indicating the formation of a E:(glutarate)2 complex as a result of occupying both the lysine- and alpha-Kg-binding sites. Pyruvate, a slow alternative keto acid substrate, exhibits competitive inhibition versus both lysine and alpha-Kg, suggesting the combination to the E:NADH:alpha-Kg and E:NADH:lysine enzyme forms. The equilibrium constant for the reaction has been measured at pH 7.0 as 3.9 x 10(-7) M by monitoring the change in NADH upon the addition of the enzyme. The Haldane relationship is in very good agreement with the directly measured value.  相似文献   

2.
The preceding paper in this journal has reported that pyruvate could be substituted for 2-oxo-glutarate as a substrate of saccharopine dehydrogenase [epsilon-N-(L-glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine-forming) in the direction of reductive condensation. In the present communication, the kinetic mechanism of saccharopine dehydrogenase reaction with NADH, L-lysine and pyruvate as reactants is reported. The results of initial velocity study, inhibition studies with lysine analogs and a reaction product, NAD+, are consistent with an ordered mechanism with the coenzyme binding first and pyruvate last. The reaction mechanism is at variance with that of the normal reaction in which 2-oxoglutarate is the substrate, in that the order of addition of the amino and oxo acid substrates is reversed. This fact suggests that there exists a small degree of randomness in the binding of amino and oxo acid substrates. From a product inhibition study, NAD+ was shown to be the last reactant released. Saccharopine [epsilon-N-(L-glutaryl-2)-L-lysine] was found to act as a potent dead-end inhibitor of the condensation reactions (of lysine and 2-oxoglutarate, and of lysine and pyruvate) by forming an abortive E. NADH. saccharopine complex.  相似文献   

3.
We have developed an enzymatic method for measuring saccharopine, a key intermediate in lysine metabolism. With the enzyme saccharopine dehydrogenase, saccharopine can be oxidized to lysine and alpha-ketoglutarate with the corresponding conversion of NAD to NADH. The natural equilibrium favors saccharopine formation, but using hydrazine to trap one of the products, alpha-ketoglutarate, shifts the reaction toward quantitative oxidation of saccharopine. A stable endpoint is reached in 15-20 min, and although high concentrations of alpha-ketoglutarate slow the reaction, the end product is fully recovered. Unlike previous assays this technique is specific, convenient, and capable of measuring saccharopine directly in protein-free biological fluids or extracts.  相似文献   

4.
The stereospecificity of hydrogen transfer in the synthesis of saccharopine from alpha-ketoglutarate and L-lysine catalyzed by saccharopine dehydrogenase (N5-(1,3-dicarboxypropyl)-L-lysine: NAD oxidoreductase (L-lysine-forming), EC 1.5.1.7) was examined by using [4A-3H]- and [4B-3H]NADH. The enzyme showed the A-stereospecificity. The NMR analysis of the saccharopine prepared with [4"A-2H]NADH revealed that the label was incorporated into the C-2 of the glutaryl moiety.  相似文献   

5.
Vashishtha AK  West AH  Cook PF 《Biochemistry》2008,47(19):5417-5423
Kinetic studies were carried out for histidine-tagged saccharopine reductase from Saccharomyces cerevisiae at pH 7.0, suggesting a sequential mechanism with ordered addition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) to the free enzyme followed by L-alpha-aminoadipate-delta-semialdehyde ( L-AASA) which adds in rapid equilibrium prior to l-glutamate in the forward reaction direction. In the reverse reaction direction, nicotinamide adenine dinucleotide phosphate (NADP) adds to the enzyme followed by addition of saccharopine. Product inhibition by NADP is competitive vs NADPH and noncompetitive vs alpha-AASA and L-glutamate, suggesting that the dinucleotide adds to the free enzyme prior to the aldehyde. Saccharopine is noncompetitive vs NADPH, alpha-AASA, and L-glutamate. In the direction of saccharopine oxidation, NADPH is competitive vs NADP and noncompetitive vs saccharopine, L-glutamate is noncompetitive vs both NADP and saccharopine, while L-AASA is noncompetitive vs saccharopine and uncompetitive vs NADP. The sequential mechanism is also corroborated by dead-end inhibition studies using analogues of AASA, L-glutamate, and saccharopine. 2-Amino-6-heptenoic acid was chosen as a dead-end analogue of L-AASA and is competitive vs AASA, uncompetitive vs NADPH, and noncompetitive vs L-glutamate. alpha-Ketoglutarate (alpha-Kg) serves as the dead-end analogue of L-glutamate and is competitive vs L-glutamate and uncompetitive vs L-AASA and NADPH. In the direction of saccharopine oxidation, N-oxalylglycine, L-pipecolic acid, L-leucine, alpha-ketoglutarate, glyoxylic acid, and L-ornithine were used as dead-end analogues of saccharopine and showed competitive inhibition vs saccharopine and uncompetitive inhibition vs NADP. The equilibrium constant for the reaction was measured at pH 7.0 by monitoring the change in absorbance of NADPH and is 200 M(-1). The value is in good agreement with the value determined using the Haldane relationship.  相似文献   

6.
A kinetic study of the ninhydrin reaction   总被引:1,自引:0,他引:1  
  相似文献   

7.
Utilizing a temperature-sensitive mutant of Escherichia coli K-12 defective in the coupling of metabolic energy to active transport, we have demonstrated that the uptake systems for arabinose, galactose, valine, histidine, and glutamine, which are sensitive to the osmotic shock treatment of L. A. Heppel (1965) (J. Biol. Chem.240, 3685), are all totally defective at the nonpermissive temperature (42 °C) whereas the intracellular ATP levels increase twofold. Phosphate bond energy alone is therefore not sufficient to energize the transport of these substrates. We have confirmed the findings of E. A., Berger and L. A. Heppel (1974) (J. Biol. Chem. 249, 7747) regarding a severe arsenate I inhibition of the uptake of substrates belonging to osmotic shock-sensitive transport systems and therefore conclude that both ATP and a functional ecf gene product are required for the coupling of energy to the transport of these solutes.  相似文献   

8.
The steady state kinetics of pig liver glucose-6-phosphate dehydrogenase is consistent with an ordered, sequential mechanism in which NADP is bound first and NADPH released last. Kia is 9.0 muM, Ka is 4.8 muM, and Kb is 36 muM. Glucosamine 6-phosphate, a substrate analogue and competitive inhibitor, is used to help rule out a possible random mechanism. ADP is seen to form a complex with the free form of the enzyme whereas ATP forms a complex with both the free and E-NADP forms of the enzyme. The KI for the E-ADP complex is 1.9 mM, while the Ki values for the E-ATP and E-NADP-ATP complexes are 7.2 and 4.5 mM, respectively.  相似文献   

9.
Saccharopine dehydrogenase [N6-(glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine forming)] catalyzes the final step in the alpha-aminoadipate pathway for lysine biosynthesis. It catalyzes the reversible pyridine nucleotide-dependent oxidative deamination of saccharopine to generate alpha-Kg and lysine using NAD+ as an oxidizing agent. The proton shuttle chemical mechanism is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. In the direction of lysine formation, once NAD+ and saccharopine bind, a group with a pKa of 6.2 accepts a proton from the secondary amine of saccharopine as it is oxidized. This protonated general base then does not participate in the reaction again until lysine is formed at the completion of the reaction. A general base with a pKa of 7.2 accepts a proton from H2O as it attacks the Schiff base carbon of saccharopine to form the carbinolamine intermediate. The same residue then serves as a general acid and donates a proton to the carbinolamine nitrogen to give the protonated carbinolamine. Collapse of the carbinolamine is then facilitated by the same group accepting a proton from the carbinolamine hydroxyl to generate alpha-Kg and lysine. The amine nitrogen is then protonated by the group that originally accepted a proton from the secondary amine of saccharopine, and products are released. In the reverse reaction direction, finite primary deuterium kinetic isotope effects were observed for all parameters with the exception of V2/K(NADH), consistent with a steady-state random mechanism and indicative of a contribution from hydride transfer to rate limitation. The pH dependence, as determined from the primary isotope effect on DV2 and D(V2/K(Lys)), suggests that a step other than hydride transfer becomes rate-limiting as the pH is increased. This step is likely protonation/deprotonation of the carbinolamine nitrogen formed as an intermediate in imine hydrolysis. The observed solvent isotope effect indicates that proton transfer also contributes to rate limitation. A concerted proton and hydride transfer is suggested by multiple substrate/solvent isotope effects, as well as a proton transfer in another step, likely hydrolysis of the carbinolamine. In agreement, dome-shaped proton inventories are observed for V2 and V2/K(Lys), suggesting that proton transfer exists in at least two sequential transition states.  相似文献   

10.
11.
Saccharopine dehydrogenase catalyzes the NAD-dependent oxidative deamination of saccharopine to l-lysine and α-ketoglutarate. Lysine 99 is within hydrogen-bond distance to the α-carboxylate of the lysine substrate and D319 is in the vicinity of the carboxamide side chain of NADH. Both are conserved and may be important to the overall reaction. Replacing K99 with M gives decreases of 110-, 80- and 20-fold in the V(2)/K(m) values for lysine, α-ketoglutarate and NADH, respectively. Deuterium isotope effects on V and V/K(Lys) increase, while the solvent deuterium isotope effects decrease compared to the C205S mutant enzyme. Data for K99M suggest a decreased affinity for all reactants and a change in the partition ratio of the imine intermediate to favor hydrolysis. A change in the bound conformation of the imine and/or the distance of the imine carbon to C4 of the nicotinamide ring of NADH is also suggested. Changing D319 to A decreases V(2)/K(NADH) by 33-fold. Primary deuterium and solvent deuterium isotope effects decrease compared to C205S suggesting a non-isotope sensitive step has become slower. NADH binds to enzyme first, and sets the site for binding of lysine and α-ketoglutarate. The slower step is likely the conformational change generated upon binding of NADH.  相似文献   

12.
Andi B  Xu H  Cook PF  West AH 《Biochemistry》2007,46(44):12512-12521
Three structures of saccharopine dehydrogenase (l-lysine-forming) (SDH) have been determined in the presence of sulfate, adenosine monophosphate (AMP), and oxalylglycine (OxGly). In the sulfate-bound structure, a sulfate ion binds in a cleft between the two domains of SDH, occupies one of the substrate carboxylate binding sites, and results in partial closure of the active site of the enzyme due to a domain rotation of almost 12 degrees in comparison to the apoenzyme structure. In the second structure, AMP binds to the active site in an area where the NAD+ cofactor is expected to bind. All of the AMP moieties (adenine ring, ribose, and phosphate) interact with specific residues of the enzyme. In the OxGly-bound structure, carboxylates of OxGly interact with arginine residues representative of the manner in which substrate (alpha-ketoglutarate and saccharopine) may bind. The alpha-keto group of OxGly interacts with Lys77 and His96, which are candidates for acid-base catalysis. Analysis of ligand-enzyme interactions, comparative structural analysis, corroboration with kinetic data, and discussion of a ternary complex model are presented in this study.  相似文献   

13.
14.
Saccharopine dehydrogenase was previously purified 380-fold from human placenta. The enzyme was shown to catalyze the formation of α-aminoadipic-δ-semialdehyde and glutamate from saccharopine, to have a molecular weight of 480,000 on gel filtration, and not to be separable from l-lysine-α-ketoglutarate reductase. Additional properties of the saccharopine dehydrogenase are now described. The pH optimum for the conversion of saccharopine to glutamate and α-aminoadipic-δ-semialdehyde is 8.5 in Tris-HCl buffer and 8.9 in 2-amino-2-methyl-1,3-propanediol buffer. The specificity of the enzyme for Saccharopine and NAD and the inhibition by glutamate and product analogs were tested. It was found the NADP was the only cofactor that could replace NAD in the enzyme reaction and that several NAD analogs were reaction inhibitors. Glutamate was found to be only moderately effective as an inhibitor. Initial velocity studies revealed that the enzyme has an ordered reaction mechanism. The true Km values for saccharopine and NAD are 1.15 mm and 0.0645 mm, respectively.  相似文献   

15.
Xu H  West AH  Cook PF 《Biochemistry》2007,46(25):7625-7636
A survey of NADH, alpha-Kg, and lysine analogues has been undertaken in an attempt to define the substrate specificity of saccharopine dehydrogenase and to identify functional groups on all substrates and dinucleotides important for substrate binding. A number of NAD analogues, including NADP, 3-acetylpyridine adenine dinucleotide (3-APAD), 3-pyridinealdehyde adenine dinucleotide (3-PAAD), and thionicotinamide adenine dinucleotide (thio-NAD), can serve as a substrate in the oxidative deamination reaction, as can a number of alpha-keto analogues, including glyoxylate, pyruvate, alpha-ketobutyrate, alpha-ketovalerate, alpha-ketomalonate, and alpha-ketoadipate. Inhibition studies using nucleotide analogues suggest that the majority of the binding energy of the dinucleotides comes from the AMP portion and that distinctly different conformations are generated upon binding of the oxidized and reduced dinucleotides. Addition of the 2'-phosphate as in NADPH causes poor binding of subsequent substrates but has little effect on coenzyme binding and catalysis. In addition, the 10-fold decrease in affinity of 3-APAD in comparison to NAD suggests that the nicotinamide ring binding pocket is hydrophilic. Extensive inhibition studies using aliphatic and aromatic keto acid analogues have been carried out to gain insight into the keto acid binding pocket. Data suggest that a side chain with three carbons (from the alpha-keto group up to and including the side chain carboxylate) is optimal. In addition, the distance between the C1-C2 unit and the C5 carboxylate of the alpha-keto acid is also important for binding; the alpha-oxo group contributes a factor of 10 to affinity. The keto acid binding pocket is relatively large and flexible and can accommodate the bulky aromatic ring of a pyridine dicarboxylic acid and a negative charge at the C3 but not the C4 position. However, the amino acid binding site is hydrophobic, and the optimal length of the hydrophobic portion of the amino acid carbon side chain is three or four carbons. In addition, the amino acid binding pocket can accommodate a branch at the gamma-carbon, but not at the beta-carbon.  相似文献   

16.
17.
Saccharopine dehydrogenase (N6-(glutar-2-yl)-L-ly-sine:NAD oxidoreductase (L-lysine-forming)) from baker's yeast was purified to homogenicity. The overall purification was about 1,200-fold over the crude extract with a yield of about 24%. The purified enzyme had a sedimentation coefficient (S20,w) of 3.0 S. The molecular weight determinations by sedimentation equilibrium, Sephadex G-100 gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a value of about 39,000 and, therefore, saccharopine dehydrogenase is a single polypeptide chain enzyme. A Stokes radius of 27 A and a diffusion constant of 7.9 X 10(-7) cm2 s-1 were obtained from Sephadex gel filtration chromatography. The enzyme had a high isoelectric pH of 10.1. The NH2-terminal sequence was Ala-Ala----. The enzyme possessed 3 cysteine residues/molecule; no disulfide bond was present. Incubation of saccharopine dehydrogenase with p-chloromercuribenzoate or iodoacetate resulted in complete loss of enzyme activity. Whereas the coenzyme and substrates were ineffective in protecting from inactivation by p-chloromercuribenzoate, iodoacetate inhibition was protected by excess coenzyme.  相似文献   

18.
19.
A model for the glutamate dehydrogenase reaction has been obtained that contains the reported intermediates suggested by binding and equilibrium isotope exchange methods. Calculated steady state-initial velocity rates using this model are quantitatively consistent with a wide range of nonlinear experimental data in both directions.  相似文献   

20.
1. The mechanisms of the reduction of oxaloacetate and of 3-fluoro-oxaloacetate by NADH catalysed by cytoplasmic pig heart malate dehydrogenase (MDH) were investigated. 2. One mol of dimeric enzyme produces 1.7+/-0.4 mol of enzyme-bound NADH when mixed with saturating NAD+ and L-malate at a rate much higher than the subsequent turnover at pH 7.5. 3. Transient measurements of protein and nucleotide fluorescence show that the steady-state complex in the forward direction is MDH-NADH and in the reverse direction MDH-NADH-oxaloacetate. 4. The rate of dissociation of MDH-NADH was measured and is the same as Vmax. in the forward direction at pH 7.5. Both NADH-binding sites are kinetically equivalent. The rate of dissociation varies with pH, as does the equilibrium binding constant for NADH. 5. 3-Fluoro-oxaloacetate is composed of three forms (F1, F2 and S) of which F1 and F2 are immediately substrates for the enzyme. The third form, S, is not a substrate, but when the F forms are used up form S slowly and non-enzymically equilibrates to yield the active substrate forms. S is 2,2-dihydroxy-3-fluorosuccinate. 6. The steady-state compound during the reduction of form F1 is an enzyme form that does not contain NADH, probably MDH-NAD+-fluoromalate. The steady-state compound for form F2 is an enzyme form containing NADH, probably MDH-NADH-fluoro-oxaloacetate. 7. The rate-limiting reaction in the reduction of form F2 shows a deuterium isotope rate ratio of 4 when NADH is replaced by its deuterium analogue, and the rate-limiting reaction is concluded to be hydride transfer. 8. A novel titration was used to show that dimeric cytoplasmic malate dehydrogenase contains two sites that can rapidly reduce the F1 form of 3-fluoro-oxaloacetate. The enzyme shows 'all-of-the-sites' behaviour. 9. Partial mechanisms are proposed to explain the enzyme-catalysed transformations of the natural and the fluoro substrates. These mechanisms are similar to the mechanism of pig heart lactate dehydrogenase and this, and the structural results of others, can be explained if the two enzymes are a product of divergent evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号