共查询到20条相似文献,搜索用时 15 毫秒
1.
D Quesada-Vincens R Fellay T Nasim V Viprey U Burger J C Prome W J Broughton S Jabbouri 《Journal of bacteriology》1997,179(16):5087-5093
Rhizobium sp. strain NGR234 produces a large family of lipochitooligosaccharide Nod factors carrying specific substituents. Among them are 3-O- (or 4-O-) and 6-O-carbamoyl groups, an N-methyl group, and a 2-O-methylfucose residue which may bear either 3-O-sulfate or 4-O-acetyl substitutions. Investigations on the genetic control of host specificity revealed a number of loci which directly affect Nod factor structure. Here we show that insertion and frameshift mutations in the nodZ gene abolish fucosylation of Nod factors. In vitro assays using GDP-L-fucose as the fucose donor show that fucosyltransferase activity is associated with the nodZ gene product (NodZ). NodZ is located in the soluble protein fraction of NGR234 cells. Together with extra copies of the nodD1 gene, the nodZ gene and its associated nod box were introduced into ANU265, which is NGR234 cured of the symbiotic plasmid. Crude extracts of this transconjugant possess fucosyltransferase activity. Fusion of a His6 tag to the NodZ protein expressed in Escherichia coli yielded a protein able to fucosylate both nonfucosylated NodNGR factors and oligomers of chitin. NodZ is inactive on monomeric N-acetyl-D-glucosamine and on desulfated Rhizobium meliloti Nod factors. Kinetic analyses showed that the NodZ protein is more active on oligomers of chitin than on nonfucosylated NodNGR factors. Pentameric chitin is the preferred substrate. These data suggest that fucosylation occurs before acylation of the Nod factors. 相似文献
2.
Patrick Mavingui Margarita Flores Xianwu Guo Guillermo Dvila Xavier Perret William J. Broughton Rafael Palacios 《Journal of bacteriology》2002,184(1):171-176
Bacterial genomes are usually partitioned in several replicons, which are dynamic structures prone to mutation and genomic rearrangements, thus contributing to genome evolution. Nevertheless, much remains to be learned about the origins and dynamics of the formation of bacterial alternative genomic states and their possible biological consequences. To address these issues, we have studied the dynamics of the genome architecture in Rhizobium sp. strain NGR234 and analyzed its biological significance. NGR234 genome consists of three replicons: the symbiotic plasmid pNGR234a (536,165 bp), the megaplasmid pNGR234b (>2,000 kb), and the chromosome (>3,700 kb). Here we report that genome analyses of cell siblings showed the occurrence of large-scale DNA rearrangements consisting of cointegrations and excisions between the three replicons. As a result, four new genomic architectures have emerged. Three consisted of the cointegrates between two replicons: chromosome-pNGR234a, chromosome-pNGR234b, and pNGR234a-pNGR234b. The other consisted of a cointegrate of the three replicons (chromosome-pNGR234a-pNGR234b). Cointegration and excision of pNGR234a with either the chromosome or pNGR234b were studied and found to proceed via a Campbell-type mechanism, mediated by insertion sequence elements. We provide evidence showing that changes in the genome architecture did not alter the growth and symbiotic proficiency of Rhizobium derivatives. 相似文献
3.
To differentiate among the roles of the three nodD genes of Rhizobium meliloti 1021, we studied the activation of a nodC-lacZ fusion by each of the three nodD genes in response to root exudates from several R. meliloti host plants and in response to the flavone luteolin. We found (i) that the nodD1 and nodD2 products (NodD1 and NodD2) responded differently to root exudates from a variety of hosts, (ii) that NodD1 but not NodD2 responded to luteolin, (iii) that NodD2 functioned synergistically with NodD1 or NodD3, (iv) that NodD2 interfered with NodD1-mediated activation of nodC-lacZ in response to luteolin, and (v) that a region adjacent to and upstream of nodD2 was required for NodD2-mediated activation of nodC-lacZ. We also studied the ability of each of the three R. meliloti nodD genes to complement nodD mutations in R. trifolii and Rhizobium sp. strain NGR234. We found (i) that nodD1 complemented an R. trifolii nodD mutation but not a Rhizobium sp. strain NGR234 nodD1 mutation and (ii) that R. meliloti nodD2 or nodD3 plus R. meliloti syrM complemented the nodD mutations in both R. trifolii and Rhizobium sp. strain NGR234. Finally, we determined the nucleotide sequence of the R. meliloti nodD2 gene and found that R. meliloti NodD1 and NodD2 are highly homologous except in the C-terminal region. Our results support the hypothesis that R. meliloti utilizes the three copies of nodD to optimize the interaction with each of its legume hosts. 相似文献
4.
Boukli NM Sunderasan E Bartsev A Hochstrasser D Perret X Bjourson AJ Krause A Broughton WJ 《Journal of plant physiology》2007,164(6):794-806
Interactions between legumes and rhizobia are controlled by the sequential exchange of symbiotic signals. Two different techniques, 2D-PAGE electrophoresis and differential display were used to study the effects of rhizobial signals on legume development. Application of variously substituted lipo-oligo-saccharidic Nod-factors to roots of Vigna unguiculata resulted in changes in the phosphorylation patterns of microsomal proteins. Reliable amino-acid sequences were obtained for one Nod-factor enhanced protein which was highly homologous to the 57-kDa subunit from Arabidopsis thaliana vacuolar membrane H(+)-ATPase. Immuno-blotting techniques demonstrated that Nod-factors cause rapid and massive increases of this enzyme in treated roots, suggesting that H(+)-ATPases play symbiotic roles. Concomitantly, we used differential display (DD) techniques on mRNA isolated from root-hairs to analyse early root responses to NGR234. Significant matches of several DD clones to known sequences were found. Clone D2.62 was homologous to a multitude of receptor kinases including S receptor-like kinases of A. thaliana and clone D4.1 showed similarities to Lotus japonicus phosphatidylinositol transfer-like protein III and late nodulin 16. Independent confirmatory analyses of these differentially expressed clones indicated expression at very low levels. 相似文献
5.
6.
7.
8.
Streit WR Schmitz RA Perret X Staehelin C Deakin WJ Raasch C Liesegang H Broughton WJ 《Journal of bacteriology》2004,186(2):535-542
Rhizobium sp. strain NGR234 has an exceptionally broad host range and is able to nodulate more than 112 genera of legumes. Since the overall organization of the NGR234 genome is strikingly similar to that of the narrow-host-range symbiont Rhizobium meliloti strain 1021 (also known as Sinorhizobium meliloti), the obvious question is why are the spectra of hosts so different? Study of the early symbiotic genes of both bacteria (carried by the SymA plasmids) did not provide obvious answers. Yet, both rhizobia also possess second megaplasmids that bear, among many other genes, those that are involved in the synthesis of extracellular polysaccharides (EPSs). EPSs are involved in fine-tuning symbiotic interactions and thus may help answer the broad- versus narrow-host-range question. Accordingly, we sequenced two fragments (total, 594 kb) that encode 575 open reading frames (ORFs). Comparisons revealed 19 conserved gene clusters with high similarity to R. meliloti, suggesting that a minimum of 28% (158 ORFs) of the genetic information may have been acquired from a common ancestor. The largest conserved cluster carried the exo and exs genes and contained 31 ORFs. In addition, nine highly conserved regions with high similarity to Agrobacterium tumefaciens C58, Bradyrhizobium japonicum USDA110, and Mesorhizobium loti strain MAFF303099, as well as two conserved clusters that are highly homologous to similar regions in the plant pathogen Erwinia carotovora, were identified. Altogether, these findings suggest that >/==" BORDER="0">40% of the pNGR234b genes are not strain specific and were probably acquired from a wide variety of other microbes. The presence of 26 ORFs coding for transposases and site-specific integrases supports this contention. Surprisingly, several genes involved in the degradation of aromatic carbon sources and genes coding for a type IV pilus were also found. 相似文献
9.
10.
Three Replicons of Rhizobium sp. Strain NGR234 Harbor Symbiotic Gene Sequences 总被引:1,自引:0,他引:1 下载免费PDF全文
Margarita Flores Patrick Mavingui Lourdes Girard Xavier Perret William J. Broughton Esperanza Martínez-Romero Guillermo Dvila Rafael Palacios 《Journal of bacteriology》1998,180(22):6052-6053
Rhizobium sp. strain NGR234 contains three replicons: the symbiotic plasmid or pNGR234a, a megaplasmid (pNGR234b), and the chromosome. Symbiotic gene sequences not present in pNGR234a were analyzed by hybridization. DNA sequences homologous to the genes fixLJKNOPQGHIS were found on the chromosome, while sequences homologous to nodPQ and exoBDFLK were found on pNGR234b. 相似文献
11.
S. Berck X. Perret D. Quesada-Vincens J.-C. Prom W. J. Broughton S. Jabbouri 《Journal of bacteriology》1999,181(3):957-964
Following (iso)flavonoid induction, nodulation genes of the symbiotic nitrogen-fixing bacterium Rhizobium sp. strain NGR234 elaborate a large family of lipooligosaccharidic Nod factors (NodNGR factors). When secreted into the rhizosphere of compatible legumes, these signal molecules initiate root hair deformation and nodule development. The nonreducing glucosamine residue of NodNGR factors are N acylated, N methylated, and mono- or biscarbamoylated, while position C-6 of the reducing extremity is fucosylated. This fucose residue is normally 2-O methylated and either sulfated or acetylated. Here we present an analysis of all acetylated NodNGR factors, which clearly shows that the acetate group may occupy position C-3 or C-4 of the fucose moiety. Disruption of the flavonoid-inducible nolL gene, which is preceded by a nod box, results in the synthesis of NodNGR factors that lack the 3-O- or 4-O-acetate groups. Interestingly, the nodulation capacity of the mutant NGRΩnolL is not impaired, whereas introduction of the nod box::nolL construct into the related strain Rhizobium fredii USDA257 extends the host range of this bacterium to Calopogonium caeruleum, Leucaena leucocephala, and Lotus halophilus. Nod factors produced by a USDA257(pnolL) transconjugant were also acetylated. The nod box::nolL construct was also introduced into ANU265 (NGR234 cured of its symbiotic plasmid), along with extra copies of the nodD1 gene. When permeabilized, these cells possessed acetyltransferase activity, although crude extracts did not. 相似文献
12.
Christel Schmeisser Heiko Liesegang Dagmar Krysciak Nadia Bakkou Antoine Le Quéré Antje Wollherr Isabelle Heinemeyer Burkhard Morgenstern Andreas Pommerening-R?ser Margarita Flores Rafael Palacios Sydney Brenner Gerhard Gottschalk Ruth A. Schmitz William J. Broughton Xavier Perret Axel W. Strittmatter Wolfgang R. Streit 《Applied and environmental microbiology》2009,75(12):4035-4045
Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule.Diverse soil bacteria interact with plants in ways that range from symbiotic to pathogenic. Symbiotic Eubacteria (both alpha- and betaproteobacteria, collectively called rhizobia) form nitrogen-fixing associations of tremendous environmental importance (41, 66). Although some rhizobia are able to reduce atmospheric nitrogen to ammonia under saprophytic, free-living conditions, the reduced oxygen tensions found within the intracellular environment of specialized organs called nodules, maximizes this process (16). As legume roots penetrate the soil, they come in contact with rhizobia. Symbiotic interactions are initiated by the exchange of diverse molecules between the partners. Among them, plants liberate flavonoids into the rhizosphere that upregulate rhizobial genes. As a result, lipo-chito-oligo-saccharidic Nod factors are produced that trigger the nodulation pathway in susceptible legumes. Then, in many hosts, rhizobia enter the roots through root hairs, make their way to the cortex, multiply and fill the intracellular spaces of mature nodules. Centripetal progression of rhizobia into the plant and their maturation into nitrogen-fixing symbiosomes depends on the continued exchange of diverse signals. Many, but not all of these signals have been identified; one sure way to take stock of what is necessary for effective symbiosis is to sequence the partners. We began this work by assembling overlapping sets of cosmids (contigs) of the microsymbiont Rhizobium sp. strain NGR234 (hereafter NGR234) (63), which enabled us to elucidate the nucleotide sequence of the symbiotic (pNGR243a) plasmid (29). Similar techniques permitted the assembly of sections of the extremely large megaplasmid pNGR234b (86), and some snapshot genome information was made available earlier (91); however, the use of pyrosequencing methods greatly facilitated this process. We report here the genome sequence of NGR234 that is able to nodulate more than 120 genera of legumes and the nonlegume Parasponia andersonii (69). It seems likely that the vast richness of secretory systems might be a major key to the broad host range. 相似文献
13.
Bacterial pathogens use type III secretion systems (TTSSs) to deliver virulence factors into eukaryotic cells. These effectors perturb host-defence responses, especially signal transduction pathways. A functional TTSS was identified in the symbiotic, nitrogen-fixing bacterium Rhizobium sp. NGR234. NopL (formerly y4xL) of NGR234 is a putative symbiotic effector that modulates nodulation in legumes. To test whether NopL could interact with plant proteins, in vitro phosphorylation experiments were performed using recombinant nopL protein purified from Escherichia coli as well as protein extracts from Lotus japonicus and tobacco plants. NopL serves as a substrate for plant protein kinases as well as purified protein kinase A. Phosphorylation of NopL was inhibited by the Ser/Thr kinase inhibitor K252a as well as by PD98059, a mitogen-activated protein (MAP) kinase kinase inhibitor. It thus seems likely that, after delivery into the plant cell, NopL modulates MAP kinase pathways. 相似文献
14.
Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene 总被引:1,自引:0,他引:1
M. Hanin S. Jabbouri D. Quesada-Vincens C. Freiberg X. Perret J.-C. Promé W. J. Broughton & R. Fellay 《Molecular microbiology》1997,24(6):1119-1129
Rhizobia secrete specific lipo-chitooligosaccharide signals (LCOs) called Nod factors that are required for infection and nodulation of legumes. In Rhizobium sp. NGR234, the reducing N -acetyl- d -glucosamine of LCOs is substituted at C6 with 2- O -methyl- l -fucose which can be acetylated or sulphated. We identified a flavonoid-inducible locus on the symbiotic plasmid pNGR234 a that contains a new nodulation gene, noeE which is required for the sulphation of NGR234 Nod factors (NodNGR). noeE was identified by conjugation into the closely related Rhizobium fredii strain USDA257, which produces fucosylated but non-sulphated Nod factors (NodUSDA). R. fredii transconjugants producing sulphated LCOs acquire the capacity to nodulate Calopogonium caeruleum . Furthermore, mutation of noeE (NGRΔ noeE ) abolishes the production of sulphated LCOs and prevents nodulation of Pachyrhizus tuberosus . The sulphotransferase activity linked to NoeE is specific for fucose. In contrast, the sulphotransferase NodH of Rhizobium meliloti seems to be less specific than NoeE, because its introduction into NGRΔ noeE leads to the production of a mixture of LCOs that are sulphated on C6 of the reducing terminus and sulphated on the 2- O -methylfucose residue. Together, these findings show that noeE is a host-specificity gene which probably encodes a fucose-specific sulphotransferase. 相似文献
15.
Heterologous exopolysaccharide production in Rhizobium sp. strain NGR234 and consequences for nodule development. 总被引:4,自引:1,他引:4 下载免费PDF全文
J X Gray H J Zhan S B Levery L Battisti B G Rolfe J A Leigh 《Journal of bacteriology》1991,173(10):3066-3077
Rhizobium sp. strain NGR234 produces large amounts of acidic exopolysaccharide. Mutants that fail to synthesize this exopolysaccharide are also unable to nodulate the host plant Leucaena leucocephala. A hybrid strain of Rhizobium sp. strain NGR234 containing exo genes from Rhizobium meliloti was constructed. The background genetics and nod genes of Rhizobium sp. strain NGR234 are retained, but the cluster of genes involved in exopolysaccharide biosynthesis was deleted. These exo genes were replaced with genes required for the synthesis of succinoglycan exopolysaccharide from R. meliloti. As a result of the genetic manipulation, the ability of these hybrids to synthesize exopolysaccharide was restored, but the structure was that of succinoglycan and not that of Rhizobium sp. strain NGR234. The replacement genes were contained on a cosmid which encoded the entire known R. meliloti exo gene cluster, with the exception of exoB. Cosmids containing smaller portions of this exo gene cluster did not restore exopolysaccharide production. The presence of succinoglycan was indicated by staining with the fluorescent dye Calcofluor, proton nuclear magnetic resonance spectroscopy, and monosaccharide analysis. Although an NGR234 exoY mutant containing the R. meliloti exo genes produced multimers of the succinoglycan repeat unit, as does the wild-type R. meliloti, the deletion mutant of Rhizobium sp. strain NGR234 containing the R. meliloti exo genes produced only the monomer. The deletion mutant therefore appeared to lack a function that affects the multiplicity of succinoglycan produced in the Rhizobium sp. strain NGR234 background. Although these hybrid strains produced succinoglycan, they were still able to induce the development of an organized nodule structure on L. leucocephala. The resulting nodules did not fix nitrogen, but they did contain infection threads and bacteroids within plant cells. This clearly demonstrated that a heterologous acidic exopolysaccharide structure was sufficient to enable nodule development to proceed beyond the developmental barrier imposed on mutants of Rhizobium sp. strain NGR234 that are unable to synthesize any acidic exopolysaccharide. 相似文献
16.
17.
Protein-protein interactions within type III secretion system-dependent pili of Rhizobium sp. strain NGR234 总被引:1,自引:0,他引:1
Pili synthesized by the type III secretion system of Rhizobium species strain NGR234 are essential for protein secretion and thus for efficient symbiosis with many legumes. Isolation and partial purification of these pili showed that they are composed of at least three proteins, NopA, NopB, and NopX. Using biochemical assays, we show here that these proteins interact directly with one another. 相似文献
18.
Functional and evolutionary relatedness of genes for exopolysaccharide synthesis in Rhizobium meliloti and Rhizobium sp. strain NGR234. 下载免费PDF全文
Rhizobium meliloti SU47 and Rhizobium sp. strain NGR234 produce distinct exopolysaccharides that have some similarities in structure. R. meliloti has a narrow host range, whereas Rhizobium strain NGR234 has a very broad host range. In cross-species complementation and hybridization experiments, we found that several of the genes required for the production of the two polysaccharides were functionally interchangeable and similar in evolutionary origin. NGR234 exoC and exoY corresponded to R. meliloti exoB and exoF, respectively. NGR234 exoD was found to be an operon that included genes equivalent to exoM, exoA, and exoL in R. meliloti. Complementation of R. meliloti exoP, -N, and -G by NGR234 R'3222 indicated that additional equivalent genes remain to be found on the R-prime. We were not able to complement NGR234 exoB with R. meliloti DNA. In addition to functional and evolutionary equivalence of individual genes, the general organization of the exo regions was similar between the two species. It is likely that the same ancestral genes were used in the evolution of both exopolysaccharide biosynthetic pathways and probably of pathways in other species as well. 相似文献
19.
20.
Exo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes 下载免费PDF全文
Staehelin C Forsberg LS D'Haeze W Gao MY Carlson RW Xie ZP Pellock BJ Jones KM Walker GC Streit WR Broughton WJ 《Journal of bacteriology》2006,188(17):6168-6178
Rhizobia are nitrogen-fixing bacteria that establish endosymbiotic associations with legumes. Nodule formation depends on various bacterial carbohydrates, including lipopolysaccharides, K-antigens, and exopolysaccharides (EPS). An acidic EPS from Rhizobium sp. strain NGR234 consists of glucosyl (Glc), galactosyl (Gal), glucuronosyl (GlcA), and 4,6-pyruvylated galactosyl (PvGal) residues with beta-1,3, beta-1,4, beta-1,6, alpha-1,3, and alpha-1,4 glycoside linkages. Here we examined the role of NGR234 genes in the synthesis of EPS. Deletions within the exoF, exoL, exoP, exoQ, and exoY genes suppressed accumulation of EPS in bacterial supernatants, a finding that was confirmed by chemical analyses. The data suggest that the repeating subunits of EPS are assembled by an ExoQ/ExoP/ExoF-dependent mechanism, which is related to the Wzy polymerization system of group 1 capsular polysaccharides in Escherichia coli. Mutation of exoK (NGROmegaexoK), which encodes a putative glycanase, resulted in the absence of low-molecular-weight forms of EPS. Analysis of the extracellular carbohydrates revealed that NGROmegaexoK is unable to accumulate exo-oligosaccharides (EOSs), which are O-acetylated nonasaccharide subunits of EPS having the formula Gal(Glc)5(GlcA)2PvGal. When used as inoculants, both the exo-deficient mutants and NGROmegaexoK were unable to form nitrogen-fixing nodules on some hosts (e.g., Albizia lebbeck and Leucaena leucocephala), but they were able to form nitrogen-fixing nodules on other hosts (e.g., Vigna unguiculata). EOSs of the parent strain were biologically active at very low levels (yield in culture supernatants, approximately 50 microg per liter). Thus, NGR234 produces symbiotically active EOSs by enzymatic degradation of EPS, using the extracellular endo-beta-1,4-glycanase encoded by exoK (glycoside hydrolase family 16). We propose that the derived EOSs (and not EPS) are bacterial components that play a crucial role in nodule formation in various legumes. 相似文献