首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how local environmental factors lead to temporal variability of vital rates and to plasticity of life history tactics is one of the central questions in population ecology. We used long‐term capture‐recapture data from five populations of a small hibernating rodent, the edible dormouse Glis glis, collected over a large geographical range across Europe, to determine and analyze both seasonal patterns of local survival and their relation to reproductive activity. In all populations studied, survival was lowest in early summer, higher in late summer and highest during hibernation in winter. In reproductive years survival was always lower than in non‐reproductive years, and females had higher survival rates than males. Very high survival rates during winter indicate that edible dormice rarely die from starvation due to insufficient energy reserves during the hibernation period. Increased mortality in early summer was most likely caused by high predation risk and unmet energy demands. Those effects have probably an even stronger impact in reproductive years, in which dormice were more active. Although these patterns could be found in all areas, there were also considerable differences in average survival rates, with resulting differences in mean lifetime reproductive success between populations. Our results suggest that edible dormice have adapted their life history strategies to maximize lifetime reproductive success depending on the area specific frequency of seeding events of trees producing energy‐rich seeds.  相似文献   

2.
Predicting the effects of the expected changes in climate on the dynamics of populations require that critical periods for climate‐induced changes in population size are identified. Based on time series analyses of 26 Swiss ibex (Capra ibex) populations, we show that variation in winter climate affected the annual changes in population size of most of the populations after accounting for the effects of density dependence and demographic stochasticity. In addition, precipitation during early summer also influenced the population fluctuations. This suggests that the major influences of climate on ibex population dynamics operated either through loss of individuals during winter or early summer, or through an effect on fecundity. However, spatial covariation in these climate variables was not able to synchronize the population fluctuations of ibex over larger distances, probably due to large spatial heterogeneity in the effects of single climate variables on different populations. Such spatial variation in the influence of the same climate variable on the local population dynamics suggests that predictions of influences of climate change need to account for local differences in population dynamical responses to climatic conditions.  相似文献   

3.
Events happening in one season can affect life‐history traits at (the) subsequent season(s) by carry‐over effects. Wintering conditions are known to affect breeding success, but few studies have investigated carry‐over effects on survival. The Eurasian oystercatcher Haematopus ostralegus is a coastal wader with sedentary populations at temperate sites and migratory populations in northern breeding grounds of Europe. We pooled continental European ringing‐recovery datasets from 1975 to 2000 to estimate winter and summer survival rates of migrant and resident populations and to investigate long‐term effects of winter habitat changes. During mild climatic periods, adults of both migratory and resident populations exhibited survival rates 2% lower in summer than in winter. Severe winters reduced survival rates (down to 25% reduction) and were often followed by a decline in survival during the following summer, via short‐term carry‐over effects. Habitat changes in the Dutch wintering grounds caused a reduction in food stocks, leading to reduced survival rates, particularly in young birds. Therefore, wintering habitat changes resulted in long‐term (>10 years) 8.7 and 9.4% decrease in adult annual survival of migrant and resident populations respectively. Studying the impact of carry‐over effects is crucial for understanding the life history of migratory birds and the development of conservation measures.  相似文献   

4.
1. Most studies of intraspecific variation in home range size have investigated only a single or a few factors and often at one specific scale. However, considering multiple spatial and temporal scales when defining a home range is important as mechanisms that affect variation in home range size may differ depending on the scale under investigation. 2. We aim to quantify the relative effect of various individual, forage and climatic determinants of variation in home range size across multiple spatiotemporal scales in a large browsing herbivore, the moose (Alces alces), living at the southern limit of its distribution in Norway. 3. Total home range size and core home range areas were estimated for daily to monthly scales in summer and winter using both local convex hull (LoCoH) and fixed kernel home range methods. Variance in home range size was analysed using linear mixed-effects models for repeated measurements. 4. Reproductive status was the most influential individual-level factor explaining variance in moose home range size, with females accompanied by a calf having smaller summer ranges across all scales. Variation in home range size was strongly correlated with spatiotemporal changes in quantity and quality of natural food resources. Home range size decreased with increasing browse density at daily scales, but the relationship changed to positive at longer temporal scales. In contrast, browse quality was consistently negatively correlated with home range size except at the monthly scale during winter when depletion of high-quality forage occurs. Local climate affected total home range size more than core areas. Temperature, precipitation and snow depth influenced home range size directly at short temporal scales. 5. The relative effects of intrinsic and extrinsic determinants of variation in home range size differed with spatiotemporal scale, providing clear evidence that home range size is scale dependent in this large browser. Insight into the behavioural responses of populations to climatic stochasticity and forage variability is essential in view of current and future climate change, especially for populations with thermoregulatory restrictions living at the southern limit of their distribution.  相似文献   

5.
Global climate change can significantly influence oceanic phytoplankton dynamics, and thus biogeochemical cycles and marine food webs. However, associative explanations based on the correlation between chlorophyll‐a concentration (Chl‐a) and climatic indices is inadequate to describe the mechanism of the connection between climate change, large‐scale atmospheric dynamics, and phytoplankton variability. Here, by analyzing multiple satellite observations of Chl‐a and atmospheric conditions from National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis datasets, we show that high‐latitude atmospheric blocking events over Alaska are the primary drivers of the recent decline of Chl‐a in the eastern North Pacific transition zone. These blocking events were associated with the persistence of large‐scale atmosphere pressure fields that decreased westerly winds and southward Ekman transport over the subarctic ocean gyre. Reduced southward Ekman transport leads to reductions in nutrient availability to phytoplankton in the transition zone. The findings describe a previously unidentified climatic factor that contributed to the recent decline of phytoplankton in this region and propose a mechanism of the top‐down teleconnection between the high‐latitude atmospheric circulation anomalies and the subtropical oceanic primary productivity. The results also highlight the importance of understanding teleconnection among atmosphere–ocean interactions as a means to anticipate future climate change impacts on oceanic primary production.  相似文献   

6.
Studying germination in the native and non‐native range of a species can provide unique insights into processes of range expansion and adaptation; however, traits related to germination have rarely been compared between native and non‐native populations. In a series of common garden experiments, we explored whether differences in the seasonality of precipitation, specifically, summer drought vs summer rain, and the amount and variation of annual and seasonal precipitation affect the germination responses of populations of an annual ruderal plant, Centaurea solstitialis, from its native range and from two non‐native regions with different climates. We found that seeds from all native populations, irrespective of the precipitation seasonality of the region in which they occurred, and non‐native populations from regions with dry summers displayed similarly high germination proportions and rates. In contrast, genotypes from the non‐native region with predominantly summer rain exhibited much lower germination fractions and rates. Also, percent germination was strongly correlated with variation in precipitation in winter, the season that follows germination for C. solstitialis. Specifically, germination was lower for native and non‐native populations experiencing greater variation in winter precipitation. This correlation, however, was greatly influenced by the non‐native region with summer rain, which also exhibited the greatest variation in winter precipitation among studied regions. These results suggest that rather than general climatic patterns, the degree of risk experienced at early developmental stages could exert an important control over the germination strategy of C. solstitialis populations in both native and non‐native ranges. Also, these findings reveal a largely unique germination response in C. solstitialis genotypes growing in the non‐native region with summer rain and high variation in winter precipitation. Our work raises the possibility that rapid adaptive changes in germination strategies may contribute to the success of globally distributed invaders.  相似文献   

7.
Climate change is expected to influence the viability of populations both directly and indirectly, via species interactions. The effects of large‐scale climate change are also likely to interact with local habitat conditions. Management actions designed to preserve threatened species therefore need to adapt both to the prevailing climate and local conditions. Yet, few studies have separated the direct and indirect effects of climatic variables on the viability of local populations and discussed the implications for optimal management. We used 30 years of demographic data to estimate the simultaneous effects of management practice and among‐year variation in four climatic variables on individual survival, growth and fecundity in one coastal and one inland population of the perennial orchid Dactylorhiza lapponica in Norway. Current management, mowing, is expected to reduce competitive interactions. Statistical models of how climate and management practice influenced vital rates were incorporated into matrix population models to quantify effects on population growth rate. Effects of climate differed between mown and control plots in both populations. In particular, population growth rate increased more strongly with summer temperature in mown plots than in control plots. Population growth rate declined with spring temperature in the inland population, and with precipitation in the coastal population, and the decline was stronger in control plots in both populations. These results illustrate that both direct and indirect effects of climate change are important for population viability and that net effects depend both on local abiotic conditions and on biotic conditions in terms of management practice and intensity of competition. The results also show that effects of management practices influencing competitive interactions can strongly depend on climatic factors. We conclude that interactions between climate and management should be considered to reliably predict future population viability and optimize conservation actions.  相似文献   

8.
Southern Siberian mountain ranges encompass strong climatic contrasts from the relatively oceanic northern foothills to strongly continental intermountain basins in the south. Landscape-scale climatic differences create vegetation patterns, which are analogous to the broad-scale vegetation zonation over large areas of northern Eurasia. In their southern, continental areas, these mountains harbour forest types which potentially resemble the full-glacial forests recently reconstructed for Central Europe. To identify forest vegetation–environment relationships in the southern Siberian mountain ranges, forest vegetation of the Western Sayan Mountains was sampled on a 280 km transect running from the northern foothills with oceanic climatic features to the continental Central Tuvinian Basin in the south. Based on the species composition, vegetation was classified into hemiboreal forests, occurring at drier and summer-warm sites with high-pH soil, and taiga, occurring at wetter, summer-cool sites with acidic soil. Hemiboreal forests included Betula pendula-Pinus sylvestris mesic forest, Larix sibirica dry forest and Pinus sylvestris dry forest. Taiga included Abies sibirica-Betula pendula wet forest, Abies sibirica-Pinus sibirica mesic forest and Pinus sibirica-Picea obovata continental forest. Hemiboreal forests were richer in vascular plant species, while taiga was richer in ground-dwelling cryptogams. Vegetation–environment relationships were analysed by indirect and direct ordination. Winter and summer temperatures and precipitation exerted a dominant influence on species composition. Soil pH was also an important correlate of species composition, but this factor itself was probably controlled by precipitation. At a more local scale, the main source of variation in species composition was topography, producing landscape patterns of contrasting plant communities on slopes of different aspects and valley bottoms. The response of tree species to major environmental factors was expressed with Huisman–Olff–Fresco models. Larix sibirica appeared to be most resistant to drought and winter frosts, Pinus sibirica was adapted to low temperatures both in winter and summer, and Picea obovata had an intermediate response to climate. Betula pendula, Pinus sylvestris and Populus tremula were associated with the warmest sites with intermediate precipitation, while Abies sibirica was the most moisture-demanding species, sensitive to deep winter frosts.  相似文献   

9.
Early life‐history transitions are crucial determinants of lifetime survival and fecundity. Adaptive evolution in early life‐history traits involves a complex interplay between the developing plant and its current and future environments. We examined the plant's earliest life‐history traits, dissecting an integrated suite of pregermination processes: primary dormancy, thermal induction of secondary dormancy, and seasonal germination response. We examined genetic variation in the three processes, genetic correlations among the processes, and the scaling of germination phenology with the source populations’ climates. A spring annual life history was associated with genetic propensities toward both strong primary dormancy and heat‐induced secondary dormancy, alone or in combination. Lineages with similar proportions of winter and spring annual life history have both weak primary dormancy and weak thermal dormancy induction. A genetic bias to adopt a spring annual strategy, mediated by rapid loss of primary dormancy and high thermal dormancy induction, is associated with a climatic gradient characterized by increasing temperature in summer and rainfall in winter. This study highlights the importance of considering combinations of multiple genetically based traits along a climatic gradient as adaptive strategies differentiating annual plant life‐history strategies. Despite the genetic‐climatic cline, there is polymorphism for life‐history strategies within populations, classically interpreted as bet hedging in an unpredictable world.  相似文献   

10.
Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality  = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940''s has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.  相似文献   

11.
The anchovy/sardine complex is an important fishery resource in some of the largest upwelling systems in the world. Synchronous, but out of phase, fluctuations of the two species in distant parts of the oceans have prompted a number of studies dedicated to determining the phenomena, atmospheric and oceanic, responsible for the observed synchronicity and the biological mechanisms behind the population changes of the two species. Anchovy and sardine are of high commercial value for the fishing sector in Greece; this study investigates the impact of large-scale climatic indices on the anchovy/sardine complex in the Greek seas using fishery catches as a proxy for fish productivity. Time series of catches for both species were analysed for relationships with teleconnection indices and local environmental variability. The connection between the teleconnection indices and local weather/oceanic variation was also examined in an effort to describe physical mechanisms that link large-scale atmospheric patterns with anchovy and sardine. The West African Summer Monsoon, East Atlantic Jet and Pacific–North American (PNA) pattern exhibit coherent relationships with the catches of the two species. The first two aforementioned patterns are prominent atmospheric modes of variability during the summer months when sardine is spawning and anchovy juveniles are growing. PNA is related with El Niño Southern Oscillation events. Sea Surface Temperature (SST) appears as a significant link between atmospheric and biological variability either because higher temperatures seem to be favouring sardine growth or because lower temperatures, characteristic of productivity-enhancing oceanic features, exert a positive influence on both species. However at a local scale, other parameters such as wind and mesoscale circulation describe air–sea variability affecting the anchovy/sardine complex. These relationships are non-linear and in agreement with results of previous studies stressing the importance of optimal environmental windows. The results also show differences in the response of the two species to environmental forcing and possible interactions between the two species. The nature of these phenomena, e.g., if the species interactions are direct through competition or indirect through the food web, remains to be examined.  相似文献   

12.
Paridae pox, a novel avipoxvirus infection, has recently been identified as an emerging infectious disease affecting wild tit species in Great Britain. The incursion of Paridae pox to a long-term study site where populations of wild tits have been monitored in detail for several decades provided a unique opportunity to obtain information on the local-scale epidemiological characteristics of this novel infection during a disease outbreak. Using captures of >8000 individual birds, we show that, within two years of initial emergence, Paridae pox had become established within the population of great tits (Parus major) reaching relatively high peak prevalence (10%), but was far less prevalent (<1%) in sympatric populations of several other closely related, abundant Paridae species. Nonlinear smoothing models revealed that the temporal pattern of prevalence among great tits was characterised by within-year fluctuations indicative of seasonal forcing of infection rates, which was likely driven by multiple environmental and demographic factors. There was individual heterogeneity in the course of infection and, although recovery was possible, diseased individuals were far less likely to be recaptured than healthy individuals, suggesting a survival cost of infection. This study demonstrates the value of long-term monitoring for obtaining key epidemiological data necessary to understand disease dynamics, spread and persistence in natural populations.  相似文献   

13.
Climatic influences on animal populations, mediated by changes in condition‐dependent survival or reproduction, have long intrigued ecologists. We analyzed links between winter North Atlantic Oscillations (NAO), a large scale climatic phenomenon affecting weather conditions over the North Atlantic and the Arctic, and average pre‐laying body mass in common eiders. Body mass is a good proxy for condition‐dependent reproductive output in this species. Time series links were assessed for two eider populations breeding at high latitudes, over a 10‐ and a 21‐year time series. Winter NAO affected body mass in both populations and these effects were easier to detect when changes in the series rhythm were assessed using a novel method based on data discretization and information theory, rather than detection based on changes in amplitude, assessed using traditional linear models. Winter conditions affected body condition of eiders in both populations. Different mechanisms, however, are likely to be involved in the two populations, one being presumably affected by direct effects of climate and the other by effects through the food chain. Therefore, the same species can respond along different pathways to the same large scale climatic pattern, an important consideration when seeking to understand or manage the response of species to present and future climate change.  相似文献   

14.
Although long‐distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black‐throated blue warbler (Setophaga caerulescens), a double‐brooded long‐distance migrant, we used Pradel models to analyze 25 years of mark–recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late‐season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black‐throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species.  相似文献   

15.
Spatiotemporal variation in survival may be an important driver of multi‐population dynamics in many wild animal species, yet few scientific studies have addressed this issue, primarily due to a lack of sufficiently comprehensive and detailed datasets. Synchrony in survival rates among different, often distant, subpopulations appears to be common, caused by spatially correlated environmental conditions or by movement of animals from different sites such that their ranges overlap. Many seabird populations are effectively isolated during the breeding season because colonies are widely separated, but over the winter, birds disperse widely and there may be much mixing between different populations. The non‐breeding season is also the period of main mortality for seabirds. Using mark–recapture and ring‐recovery data, we tested for spatial, temporal and age‐related correlations in survival of Common Guillemots Uria aalge among three widely separated Scottish colonies that have varying overlap in their overwintering distributions. Survival was highly correlated over time for colonies/age‐classes sharing wintering areas and, except in 2004, was essentially uncorrelated for those with separate wintering areas. These results strongly suggest that one or more aspects of the winter environment are responsible for spatiotemporal variation in survival of British Guillemots, and provide insight into the factors driving large‐scale population dynamics of the species.  相似文献   

16.
Macroclimatic niche properties derived from species distribution ranges are fundamental for projections of climate change impacts on biodiversity. However, it has been recognized that changes in regional or local distribution patterns also depend on interactions with land use. The reliability and transferability of large scale geographic predictions to small scale plant performance need to be tested experimentally. Thus, we asked how grassland plant species pairs with different macroclimatic niche properties respond to increased spring temperature and decrease summer precipitation in three different land‐use types. An experiment was carried out in the framework of the German Biodiversity Exploratories simulating climate change in 45 experimental plots in three geographical regions (Schorfheide‐Chorin, Hainich‐Dün, Schwäbische Alb) and three grassland management types (meadow, pasture, mown pasture). We planted six plant species as phytometers, each two of them representing congeneric species with contrasting macroclimatic niches and recorded plant survival and growth over 1 year. To quantify the species macroclimatic niches with respect to drought tolerance, the species’ distribution ranges were mapped and combined with global climate data. The simulated climate change had a general negative effect on plant survival and plant growth, irrespective of the macroclimatic niche characteristics of the species. Against expectation, species with ranges extending into drier regions did not generally perform better under drier conditions. Growth performance and survival was best in mown pastures, representing a quite intensive type of land use in all study regions. Species with higher macroclimatic drought tolerance were generally characterized by lower growth rates and higher survival rates in land‐use types with regular mowing regimes, probably because of reduced competition in the growing season. In conclusion, plant species with similar climatic niche characteristics cannot be expected to respond consistently over different regions owing to complex interactions of climate change with land use practices.  相似文献   

17.
Following over 20 years of research on the climatic effects on biodiversity we now have strong evidence that climate change affects phenology, fitness, and distribution ranges of different taxa, including birds. Bird phenology likely responds to changes in local weather. It is also affected by climatic year‐to‐year variations on larger scales. Although such scale‐related effects are common in ecology, most studies analyzing the effects of climate change were accomplished using climatic information on a single spatial scale. In this study, we aimed at determining the scale‐dependent sensitivity of breeding phenology and success to climate change in a migratory passerine bird, the barn swallow (Hirundo rustica). For both annual broods, we investigated effects of local weather (local scale) and the North Atlantic Oscillation (NAO, large scale) on the timing of breeding and breeding success. Consistent with previous studies in migratory birds we found that barn swallows in Eastern Germany bred progressively earlier. At the same time, they showed reduced breeding success over time in response to recent climatic changes. Responses to climatic variation were observed on both local and large climatic scales, but they differed with respect to the ecological process considered. Specifically, we found that the timing of breeding was primarily influenced by large‐scale NAO variations and to a lesser extent by local weather on the breeding grounds. Conversely, climatic conditions on the local scale affected breeding success, exclusively. The observed decrease in breeding success over years is likely a consequence of scale‐related mismatches between climatic conditions during different breeding phases. This provides further evidence that a species' response of earlier breeding may not be enough to cope with climate change. Our results emphasize the importance of considering the response of ecological processes along different climatic scales in order to better understand the complexity of climate change effects on biodiversity.  相似文献   

18.
Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range‐wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back‐cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long‐term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long‐term demographic decline and range contraction for a species of high‐conservation concern. Range‐wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal‐limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management.  相似文献   

19.
The ‘Moran effect’ predicts that dynamics of populations of a species are synchronized over similar distances as their environmental drivers. Strong population synchrony reduces species viability, but spatial heterogeneity in density dependence, the environment, or its ecological responses may decouple dynamics in space, preventing extinctions. How such heterogeneity buffers impacts of global change on large‐scale population dynamics is not well studied. Here, we show that spatially autocorrelated fluctuations in annual winter weather synchronize wild reindeer dynamics across high‐Arctic Svalbard, while, paradoxically, spatial variation in winter climate trends contribute to diverging local population trajectories. Warmer summers have improved the carrying capacity and apparently led to increased total reindeer abundance. However, fluctuations in population size seem mainly driven by negative effects of stochastic winter rain‐on‐snow (ROS) events causing icing, with strongest effects at high densities. Count data for 10 reindeer populations 8–324 km apart suggested that density‐dependent ROS effects contributed to synchrony in population dynamics, mainly through spatially autocorrelated mortality. By comparing one coastal and one ‘continental’ reindeer population over four decades, we show that locally contrasting abundance trends can arise from spatial differences in climate change and responses to weather. The coastal population experienced a larger increase in ROS, and a stronger density‐dependent ROS effect on population growth rates, than the continental population. In contrast, the latter experienced stronger summer warming and showed the strongest positive response to summer temperatures. Accordingly, contrasting net effects of a recent climate regime shift—with increased ROS and harsher winters, yet higher summer temperatures and improved carrying capacity—led to negative and positive abundance trends in the coastal and continental population respectively. Thus, synchronized population fluctuations by climatic drivers can be buffered by spatial heterogeneity in the same drivers, as well as in the ecological responses, averaging out climate change effects at larger spatial scales.  相似文献   

20.
Hawaiian waters show a trend of increasing temperature over the past several decades that are consistent with observations in other coral reef areas of the world. The first documented large‐scale coral bleaching occurred in the Hawaii region during late summer of 1996, with a second in 2002. The bleaching events in Hawaii were triggered by a prolonged regional positive oceanic sea surface temperature (SST) anomaly greater than 1°C that developed offshore during the time of annual summer temperature maximum. High solar energy input and low winds further elevated inshore water temperature by 1–2°C in reef areas with restricted water circulation (bays, reef flats and lagoons) and in areas where mesoscale eddies often retain water masses close to shore for prolonged periods of time. Data and observations taken during these events illustrate problems in predicting the phenomena of large‐scale bleaching. Forecasts and hind‐casts of these events are based largely on offshore oceanic SST records, which are only a first approximation of inshore reef conditions. The observed oceanic warming trend is the ultimate cause of the increase in the frequency and severity of bleaching events. However, coral reefs occur in shallow inshore areas where conditions are influenced by winds, orographic cloud cover, complex bathymetry, waves and inshore currents. These factors alter local temperature, irradiance, water motion and other physical and biological variables known to influence bleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号