首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Current biology : CB》2023,33(12):2541-2547.e5
  1. Download : Download high-res image (229KB)
  2. Download : Download full-size image
  相似文献   

2.
Both in situ primary production and biomass (chlorophyll ) of fractionated phytoplankton (<64,µ, <25 µm and < 10 µm) were studied in 10 Canadian Shield lakes to elucidate the spatial and temporal variability of the contribution of size fractions to the biomass and primary production of the phytoplankton community. Mean summer biomass and production of each size fraction varied significantly between lakes. Within lakes, temporal variation was low for biomass but great for production. However, temporal variation can be considered of minor importance during the sampling period, as compared to the spatial variation between lakes. Algae from the < 10 µm size fraction were the most important in biomass (41–65 %) and production (23–69%). The temporal trends for both phytoplankton variables thus generally followed closely that of the < 10 µm size fraction. Among the physical, chemical and morphometric variables of the studied lakes, water transparency (Secchi disk), total phosphorus, lake volume, lake area, and mean depth gave the best correlations with phytoplankton variables.Contribution number 354 from the Groupe de recherches en Ecologie des Eaux douces, Limnological Research Group, Université de Montréal.  相似文献   

3.
This paper gives an overview of interactions betweenbivalve grazing and ecosystem processes, that mayaffect the carrying capacity of ecosystems for bivalvesuspension feeders. These interactions consist of anumber of positive and negative feedbacks.Bivalve grazing can result in local food depletion,which may negatively influence bivalve growth. On alarger scale, it may induce a top-down control ofphytoplankton biomasss, and structural shifts inphytoplankton composition. In the case of harmfulalgal blooms, phytoplankton may negatively affectbivalve grazing rates.The processing of large amounts of particulate mattermay change nutrient cycling on the scale of estuaries,and can result in changes in the inorganic nutrientpool available for phytoplankton, through regenerationand reduced storage of nutrients in algal biomass.This can reduce nutrient limitation of thephytoplankton and stimulate algal growth rates.Observations from mesocosm studies suggest that apositive feedback from bivalve grazing onphytoplankton growth may also change the physiologicalstate of the algae and improve food quality. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
We describe the distribution in space and time of a series of physical and chemical variables, phyto-plankton, and primary production in Ezequiel Ramos Mexía Reservoir (Argentina). Its waters are soft, poor in nutrients and with a low transparency that greatly depresses primary production. Phytoplankton data indicate the presence of 79 taxa with Bacillariophyceae, Cyanophyta and Chlorophyta alternatively dominant. Chlorophyll a was always low and never exceeded 3 mg m−3. Based on these results, the trophic status of this ecosystem is discussed.  相似文献   

5.
Xiong FS  Day TA 《Plant physiology》2001,125(2):738-751
We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O(2) evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations.  相似文献   

6.
F. Vegter 《Hydrobiologia》1977,52(1):67-71
The Grevelingen estuary was cut off from the sea in May 1971, and changed into stagnat lake Grevelingen. After the closure nitrate concentrations decreased to extremely low values (less than 2 μgat NH3-N/1). Ammonia concentrations varied between 10–30 μgat NH3-N/1, comparable with the situation before the closure. Phosphate concentrations fluctuated between1–2 μgat PO4-P/1 in the estuarine phase, and increased to μgat after the closure, presumably caused by decomposition of biological material and release of phosphates from the bottom. Phytoplankton primary production was not markedly affected by the damming up, and amounted to 175 g C/m2 in 1971. Communication no. 147 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands  相似文献   

7.
Quantitative data on primary production of picoplankton are presented for three different Brazilian marine ecosystems: estuarine, coastal and oceanic. The size fraction from 0.45 μm to 1.0 μm was responsible for 3.0% to 28.5% of 14C uptake in estuarine waters; 18.5% to 40.4% in coastal waters, and 6.7% to 100.0% in oceanic waters, respectively. These results establish the importance of picoplankton as primary producers in different marine environments along the Brazilian waters.  相似文献   

8.
Bukaveckas  Paul A.  Crain  Angela S. 《Hydrobiologia》2002,481(1-3):19-31
We characterize seasonal and spatial patterns in phytoplankton abundance, production and nutrient limitation in a mesotrophic river impoundment located in the southeastern United States to assess variation arising from inter-annual differences in watershed inputs. Short-term (48 h) in situ nutrient addition experiments were conducted between May and October at three sites located along the longitudinal axis of the lake. Nutrient limitation was detected in 12 of the 18 experiments conducted over 2 years. Phytoplankton responded to additions of phosphorus alone although highest chlorophyll concentrations were observed in enclosures receiving combined (P and N) additions. Growth responses were greatest at downstream sites and in late summer suggesting that those populations experience more severe nutrient limitation. Interannual variation in nutrient limitation and primary production corresponded to differences in the timing of hydrologic inputs. Above average rainfall and discharge in late-summer (July–October) of 1996 coincided with higher in-lake nutrient concentrations, increased production, and minimal nutrient limitation. During the same period in 1995, discharge was lower, nutrient concentrations were lower, and nutrient limitation of phytoplankton production was more pronounced. Our results suggest that nutrient limitation is common in this river impoundment but that modest inter-annual variability in the timing of hydrologic inputs can substantially influence seasonal and spatial patterns.  相似文献   

9.
The photosynthetic activity of dominant phytoplankton in eutrophic shallow lake was investigated by the autoradiographic method in 1979 and 1980. It was shown by light and dark field microscopy that all species of Cyanophyta (Oscillatoria redekei, Oscillatoria agardhii, Aphanizomenon flos-aquae) were characterized by a continuously high uptake of NaH14CO3. Similarly high photosynthetic activity was observed during the occurrence of Cryptomonas sp. and nanoplankton. Contrary to these observations, diatoms showed remarkably high portions of photosynthetically inactive biomass when their development was abundant. The reasons for this discrepancy between high biomass of diatoms and relatively low primary production (measured by the 14C-method and autoradiography) are discussed.  相似文献   

10.
Water chemistry of Lake Kalgaard in 1976–77 was characterized by low concentrations of total-CO2 and inorganic nutrients. The ionic composition resembled that of precipitation (Na>Ca>Mg >K and Cl>SO4>HCO3). The seasonal pattern of total-CO2 and PO4 was regulated by internal processes and maximum concentrations as a result of decomposition processes occurred during summer stagnation. NO3 concentrations showed the opposite pattern and were relatively high from late autumn through spring and were extremely low during summer. Total-P and PO4 increased during summer due to release from the sediment. The phytoplankton biomass of surface water was low. The water chemistry suggested a shift from N-limitation of phytoplankton during summer to P-limitation at other seasons. Maximum algal concentrations occurred at 6 m during summer, probably due to a supply of nutrients (especially NH4) from deeper layers. Phytoplankton productivity was often bimodal, with an upper maximum at depths of 0 or 2 m and a second maximum at 6 m.  相似文献   

11.
Kotut  Kiplagat  Krienitz  Lothar  Muthuri  Francis M. 《Hydrobiologia》1998,368(1-3):41-59
Temporal changes in phytoplankton chlorophyll a, composition, diversity, biomass (density and fresh weight) and primary production were investigated at the Turkwel Gorge Reservoir (Kenya) over a two year period (1994 and 1995). The phytoplankton properties investigated revealed a seasonal pattern that was very distinct in 1994 and muted in 1995. The wet season was characterized by higher levels of chlorophyll a, biomass and primary production and a lower diversity. A prominent seasonality in 1994 was found to be the result of a higher river inflow volume as compared to 1995. Chlorophyll a changes showed some positive correlation to changes in total nitrogen and total phosphorus. Diversity changes were inversely correlated to changes in total counts (R = −0.84 and −0.96 for 1994 and 1995 respectively). Individual species density changes varied from a distinct seasonal pattern to a nearly uniform density. While the diatom Achnanthes dominated the wet season in 1994, coccoid blue green algae were dominant during most of 1995. Throughout the study period, most biomass was due to the diatoms but with a lower percentage of total biomass in 1995 (40%) as compared to 1994 (88%). The wet season biomass in each year was dominated by the diatoms. Dominance of the intervening period changed irregularly between diatoms, dinoflagellates, green algae and blue green algae. The range of variation in chlorophyll a, total biomass and primary production were; 4.9 to 36.8 μg l-1, 440.14 to 11172.70 mg m-3 and 1.85 to 9.67 g O2 m-2 d-1 in 1994 and 4.9 to 11.5 μg l-1, 486.46 to 1351.39 mg l-1 and 3.08 to 5.41 g O2 m-2 d-1 in 1995 in the same order. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Abiotic factors and primary production by phytoplankton and microphytobenthos was studied in the turbid Westeschelde estuary. Because of the high turbidity and high nutrient concentrations primary production by phytoplankton is light-limited. In the inner and central parts of the estuary maximum rates of primary production were therefore measured during the summer, whereas in the more marine part spring and autumn bloom were observed. Organic loading is high, causing near anaerobic conditions upstream in the river Schelde. Because of this there were no important phytoplankton grazers in this part of the estuary and hence the grazing pressure on phytoplankton was minimal. As this reduced losses, biomass is maximal in the river Schelde, despite the very low growth rates.On a number of occasions, primary production by benthic micro-algae on intertidal flats was studied. Comparison of their rates of primary production to phytoplankton production in the same period led to the conclusion that the contribution to total primary production by benthic algae was small. The main reason for this is that the photosynthetic activity declines rapidly after the flats emerged from the water. It is argued that CO2-limitation could only be partially responsible for the noticed decrease in activity.  相似文献   

13.
1. Lake Titicaca is a large, high altitude (3810 m a.s.l.) tropical lake (16°S, 68°W) that lies on the border of Bolivia and Perú, receiving high fluxes of ultraviolet radiation (UVR) throughout the year. Our studies were conducted during September of 1997 with the main objective of studying the impact of solar UVR upon phytoplankton photosynthesis.
2. Water samples were taken daily and incubated in situ (down to 14 m depth) under three radiation treatments to study the relative responses to PAR (Photosynthetic Available Radiation, 400–700 nm), UV-A (320–400 nm), and UV-B (280–320 nm) radiation.
3. Photosynthetic inhibition by UVR in surface waters was about 80%, with UV-A accounting for 60% and UV-B for 20%; the inhibition by high levels of PAR was less than 20%. The inhibition due to UVR decreased with depth so that there were no significant differences between treatments at 8.5 m depth.
4. The amount of inhibition per unit energy received by phytoplankton indicates that even though there was a significant inhibition of photosynthesis due to UVR, species in Lake Titicaca seem to be better adapted than species in high latitude environments.
5. The cellular concentration of UV-absorbing compounds, a possible mechanism of photoadaptation, was low in phytoplanktonic species. However, they were abundant in zooplankton, suggesting a high rate of bioaccumulation through the diet.  相似文献   

14.
The paper describes the seasonal variation in the rate of phytoplankton primary production in Suraha Lake – a large shallow water body – in relation to certain physico-chemical parameters and the abundance and composition of the phytoplankton over a period of two years.  相似文献   

15.
1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long‐term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates. 4. Although we found distinct responses to relatively small temperature increases, the interaction between nutrient availability, time of the year and, thus, ambient temperature was responsible for most of the observed variability in phytoplankton growth, photosynthesis and respiration. 5. Although an increase in global temperature will influence production and degradation of organic material in lakes, the documented importance of ambient temperatures and nutrient conditions suggests that effects will be most pronounced during winter and early spring, while the remaining part of the growth season will be practically unaffected by increasing temperatures.  相似文献   

16.
Arctic microalgae experience long periods of continuous darkness during the polar night, when they are unable to photosynthesize. Despite numerous studies on overwintering strategies, such as utilization of stored energy products, formation of resting stages, reduction of metabolic rates and heterotrophic lifestyles, there have been few attempts to assess the in situ physiological state and restoration of the photosynthetic apparatus upon re‐illumination. In this study, we found diverse and active marine phytoplankton communities during the polar night at 78°N. Furthermore, we observed rapid changes (≤20 min) in the efficiency of photosynthetic electron transport upon re‐illumination. High photosynthetic capacity and net primary production were established after 24 h of re‐illumination. Our results suggest that some Arctic autotrophs maintain fully functional photosystem II and downstream electron acceptors during the polar night even though the low in situ net primary production levels measured in January prove that light was not sufficient to support any measurable primary production. Due to low temperatures resulting in low respiratory rates as well as the absence of photodamage during the polar night, maintenance of basic photosynthetic machinery may actually pose relatively low metabolic costs for algal cells. This could allow Arctic microalgae to endure the polar night without the formation of dormant stages, enabling them to recover and take advantage of light immediately upon the suns return during the winter–spring transition.  相似文献   

17.
Determination of phytoplankton losses by comparing net and gross growth   总被引:1,自引:1,他引:0  
By comparing primary production (14C) and biomass variation it is possible to calculate the total losses of phytoplankton. For the mesotrophic drinking water reservoir Saidenbach, average loss rates of -0.31 d-1 for the total phytoplankton and -0.99 d-1 for nanoplankton were determined from September 1980 to May 1981. The greater the share of nanoplankton in the total phytoplankton, the less the real activity as reflected in biomass changes observed. The considerable (mainly nanoplankton) losses, however, cannot be explained by grazing or sedimentation. They are assumed to be caused by high mortality of flagellates due to a relatively high depth of mixing and their retention in the aphotic layer.  相似文献   

18.
Stratospheric ozone depletion caused by the release of chlorofluorocarbons is most pronounced at high latitudes, especially in the Southern Hemisphere (including the so‐called ‘ozone hole’). The consequent increase in solar ultraviolet‐B radiation (UV‐B, 280–315 nm) reaching the earth's surface may cause a variety of alterations in terrestrial ecosystems. Most effects might be expected to occur above‐ground since sunlight does not penetrate effectively below‐ground. Here, we demonstrate that solar UV‐B radiation in a fen in Tierra del Fuego (Argentina), where the ozone hole passes overhead several times during the Austral spring, is causing large changes of below‐ground processes of this ecosystem. During the third and fourth year of a manipulative field experiment, we investigated root systems in these plots and found that when the ambient solar UV‐B radiation was substantially reduced, there was a 30% increase in summer root length production and as much as a threefold decrease in already low symbiotic mycorrhizal colonization frequency of the roots compared with plots receiving near‐ambient solar UV‐B. There was also an apparent shift toward older age classes of roots under reduced solar UV‐B. Such large changes in root system behaviour may have decided effects on competition and other ecological interactions in this ecosystem.  相似文献   

19.
Phototrophic picoplankton were detected in 105-106 cells/ml concentrations in seven water bodies of differing chemistry and trophic level. Dominant picoplankters were, at all sites, coccoid cyanobacteria of 0.8-1.2 μm dimensions, exhibiting red or yellow autofluorescence. Apart from the effects of water temperature their quantitative dynamics were significantly influenced by the nitrogen supply and the herbivorous zooplankton (Cladocera). Their maximum contribution to the total planktonic primary production was about 50%, both in mesotrophic and hypereutrophic environments. However during the bloom of filamentous nitrogen-fixing blue-greens their role became negligible. In phytoplankton communities the significance of picoplankton is overestimated several times, when based on the cell count, while it is underestimated on the basis of biomass. The most useful characteristics of phytoplankton size groups was the total surface area of their cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号