共查询到20条相似文献,搜索用时 0 毫秒
1.
Visual neurons, from retina to cortex, adapt slowly to stimulus contrast. Following a switch from high to low contrast, a neuron rapidly decreases its responsiveness and recovers over 5-20 s. Cortical adaptation arises from an intrinsic cellular mechanism: a sodium-dependent potassium conductance that causes prolonged hyperpolarization. Spiking can drive this mechanism, raising the possibility that the same mechanism exists in retinal ganglion cells. We found that adaptation in ganglion cells corresponds to a slowly recovering afterhyperpolarization (AHP), but, unlike in cortical cells, this AHP is not primarily driven by an intrinsic cellular property: spiking was not sufficient to generate adaptation. Adaptation was strongest following spatial stimuli tuned to presynaptic bipolar cells rather than the ganglion cell; it was driven by a reduced excitatory conductance, and it persisted while blocking GABA and glycine receptors, K((Ca)) channels, or mGluRs. Thus, slow adaptation arises from reduced glutamate release from presynaptic (nonspiking) bipolar cells. 相似文献
2.
A rare type of mammalian retinal ganglion cell (RGC) expresses the photopigment melanopsin and is a photoreceptor. These intrinsically photosensitive RGCs (ipRGCs) drive circadian-clock resetting, pupillary constriction, and other non-image-forming photic responses. Both the light responses of ipRGCs and the behaviors they drive are remarkably sustained, raising the possibility that, unlike rods and cones, ipRGCs do not adjust their sensitivity according to lighting conditions ("adaptation"). We found, to the contrary, that ipRGC sensitivity is plastic, strongly influenced by lighting history. When exposed to a constant, bright background, the background-evoked response decayed, and responses to superimposed flashes grew in amplitude, indicating light adaptation. After extinction of a light-adapting background, sensitivity recovered progressively in darkness, indicating dark adaptation. Because these adjustments in sensitivity persisted when synapses were blocked, they constitute "photoreceptor adaptation" rather than "network adaptation." Implications for the mechanisms generating various non-image-forming visual responses are discussed. 相似文献
3.
RGC axons extend in the optic tracts in a manner that correlates with the expression in the hypothalamus and epithalamus of a soluble factor inhibitory to RGC axon outgrowth. Additionally, although the RGC axons extend adjacent to the telencephalon, they do not normally grow into this tissue. Here, we show that slit1 and slit2, known chemorepellents for RGC axons expressed in specific regions of the diencephalon and telencephalon, help regulate optic tract development. In mice lacking slit1 and slit2, a subset of RGC axons extend into the telencephalon and grow along the pial surface but not more deeply into this tissue. Surprisingly, distinct guidance errors occur in the telencephalon of slit1 -/-; slit2 +/- and slit1/2 -/- embryos, suggesting that the precise level of Slits is critical for determining the path followed by individual axons. In mice lacking both slit1 and slit2, a subset of RGC axons also project aberrantly into the epithalamus, pineal and across the dorsal midline. However, many axons reach their primary target, the superior colliculus. This demonstrates that Slits play an important role in directing the guidance of post-crossing RGC axons within the optic tracts but are not required for target innervation. 相似文献
4.
Fast and slow contrast adaptation in retinal circuitry 总被引:8,自引:0,他引:8
The visual system adapts to the magnitude of intensity fluctuations, and this process begins in the retina. Following the switch from a low-contrast environment to one of high contrast, ganglion cell sensitivity declines in two distinct phases: a fast change occurs in <0.1 s, and a slow decrease over approximately 10 s. To examine where these modulations arise, we recorded intracellularly from every major cell type in the salamander retina. Certain bipolar and amacrine cells, and all ganglion cells, adapted to contrast. Generally, these neurons showed both fast and slow adaptation. Fast effects of a contrast increase included accelerated kinetics, decreased sensitivity, and a depolarization of the baseline membrane potential. Slow adaptation did not affect kinetics, but produced a gradual hyperpolarization. This hyperpolarization can account for slow adaptation in the spiking output of ganglion cells. 相似文献
5.
Retinal ganglion cell (RGC) degeneration is an important cause of visual impairment, and results in part from microglia-mediated inflammation. Numerous experimental studies have focused on identifying drug targets to rescue these neurons. We recently showed that KV1.1 and KV1.3 channels are expressed in adult rat RGCs and that siRNA -mediated knockdown of either channel reduces RGC death after optic nerve transection. Earlier we found that KV1.3 channels also contribute to microglial activation and neurotoxicity; raising the possibility that these channels contribute to neurodegeneration through direct roles in RGCs and through inflammatory mechanisms. Here, RGC survival was increased by combined siRNA-mediated knockdown of KV1.1 and KV1.3 in RGCs, but survival was much greater when knockdown of either channel was combined with intraocular injection of a KV1.3 channel blocker (agitoxin-2 or margatoxin). After axotomy, increased expression of several inflammation-related molecules preceded RGC loss and, consistent with a dual mechanism, their expression was differentially affected when channel knockdown in RGCs was combined with KV1.3 blocker injection. KV1.3 blockers reduced activation of retinal microglia and their tight apposition along RGC axon fascicles after axotomy, but did not prevent their migration from the inner plexiform to the damaged ganglion cell layer. Expression of several growth factors increased after axotomy; and again, there were differences following blocker injection compared with RGC-selective channel knockdown. These results provide evidence that KV1.3 channels play important roles in apoptotic degeneration of adult RGCs through cell-autonomous mechanisms mediated by channels in the neurons, and non-autonomous mechanisms mediated by microglia and inflammation.Key words: neurotrauma, axotomy, optic nerve transection, microglial activation, apoptosis, KV1.1, KV1.3, siRNA in vivo, agitoxin-2, margatoxin 相似文献
6.
Alpha ganglion cells in mammalian retinae 总被引:2,自引:0,他引:2
L Peichl H Ott B B Boycott 《Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain)》1987,231(1263):169-197
Retinae from species of six orders of mammals (table 1) were processed by an on-the-slide neurofibrillar staining method to establish whether alpha-type ganglion cells are generally present in placental mammals. Alpha cells of the domestic cat, where they were first defined as a type, are used as a standard of reference. Alpha cells were found in all the twenty species examined; characteristically they have the largest somata and large dendritic fields with a typical branching pattern. In keeping with the common morphology there are inner and outer stratifying subpopulations and therefore a presumptive 'on-centre' and 'off-centre' responsiveness to light. Depending on the species, alpha cells form between 1 and 4% of the ganglion-cell population and their dendritic fields cover the retina three to four times. The morphology of alpha ganglion cells, and many of their quantitative features, are conserved in mammals coming from different habitats and having a wide variety of behaviours. Because it is known different habitats and having a wide variety of behaviours. Because it is known from the cat that alpha ganglion cells have brisk-transient or Y receptive fields it is possible that all placental mammals possess this physiological system. 相似文献
7.
R J Snowden 《Proceedings. Biological sciences / The Royal Society》1991,246(1315):53-59
Inspection of a high-contrast grating pattern affects our ability to detect patterns that are similar. This technique can be used to infer the underlying mechanisms of the visual system. By using this technique, measurements of the bandwidth of orientation channels are taken for different levels of adapting contrast and adapting duration. If the threshold elevation is plotted as the difference between the unadapted and adapted threshold in decibels, then the orientation bandwidth is invariant if taken at some fraction of the maximum elevation. This results from the fact that, as the orientation difference between the adapting and test patterns increases, the function relating threshold elevation to adapting contrast reduces in slope. These data contradict the often-used 'equivalent contrast transformation' (in which the fall off in the adaptation effect with respect to orientation is expressed in terms of an equivalent reduction in adapting contrast) as this would produce quite different bandwidths at different adapting contrasts. The data also address the issue of the neuronal mechanisms of adaptation. 相似文献
8.
AZ Minton NR Phatak DL Stankowska S He HY Ma BH Mueller M Jiang R Luedtke S Yang C Brownlee RR Krishnamoorthy 《PloS one》2012,7(8):e43199
Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP) characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1) is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ET(B)) receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ET(B) receptors in the retina, mainly in retinal ganglion cells (RGCs), nerve fiber layer (NFL), and also in the inner plexiform layer (IPL) and inner nuclear layer (INL). To determine the role of ET(B) receptors in neurodegeneration, Wistar-Kyoto wild type (WT) and ET(B) receptor-deficient (KO) rats were subjected to retrograde labeling with Fluoro-Gold (FG), following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ET(B) receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma. 相似文献
10.
A single-channel recording of the transient outward current (A-current) was obtained from dorsal root ganglion cells in culture using patch-clamp techniques. Depolarization of the membrane patch elicited pulse like current of a uniform amplitude in an outward direction, of which the unitary conductance was 20 pS. Alteration of extracellular ionic compositions indicated that the charge carriers were K ions. A systematic study was made on the voltage-dependence of the ensemble average current; (a) the activation started at a potential around -60 mV; (b) the time course of the activation was relatively rapid; (c) the channel was completely inactivated at a potential positive to -40 mV. Two time constants (tau f = 100 ms and tau s = 4,000 ms) were detected in the decay of the current indicating that the channels had two different states of inactivation. A convulsant, 4-aminopyridine (4-AP), acted on the channel only from the intracellular side of the membrane. 4-AP (5 mM) reduced not only mean open time (by 50%) but also the single-channel conductance (by 20%). The properties of the channel were independent of Ca ions in the intracellular space. 相似文献
11.
12.
E. Garcia-Valenzulela W. Gorczyca Z. Darzynkiewicz S. C. Sharma 《Developmental neurobiology》1994,25(4):431-438
Lesions to the mature mammalian central nervous system cause irreversible degeneration, in which neurons have been previously thought to be passive victims. In this study, axon-lesioned adult rat nerons are shown instead to actively degrade themselves through the process of apoptosis: a programmed type of cell death in which the cellular apparatus is actively involved in the degradation process. To investigate whether retinal ganglion cells of an adult mammal follow an apoptotic type of death when their axons are severed, DNA breaks in nuclei were labeled in situ, using a method that specifically incorporates biotinylated deoxynucleotides by exogenous terminal deoxynucleotidyl transferase on the 3′-OH ends of DNA. The active nature of the death mechanism was demonstrated by the reduction in biotin-labeled nuclei after administering the protein synthesis inhibitor cycloheximide. Our results suggest that retinal ganglion cells of the adult rat die through apoptosis when axotomized. This raises new possibilities in the treatment of CNS injuries, by the potential interruptibility of a program for neuronal death. 1994 John Wiley & Sons, Inc. 相似文献
13.
Bocksteins E Van de Vijver G Van Bogaert PP Snyders DJ 《American journal of physiology. Cell physiology》2012,303(4):C406-C415
Delayed rectifier voltage-gated K(+) (K(V)) channels are important determinants of neuronal excitability. However, the large number of K(V) subunits poses a major challenge to establish the molecular composition of the native neuronal K(+) currents. A large part (~60%) of the delayed rectifier current (I(K)) in small mouse dorsal root ganglion (DRG) neurons has been shown to be carried by both homotetrameric K(V)2.1 and heterotetrameric channels of K(V)2 subunits with silent K(V) subunits (K(V)S), while a contribution of K(V)1 channels has also been demonstrated. Because K(V)3 subunits also generate delayed rectifier currents, we investigated the contribution of K(V)3 subunits to I(K) in small mouse DRG neurons. After stromatoxin (ScTx) pretreatment to block the K(V)2-containing component, application of 1 mM TEA caused significant additional block, indicating that the ScTx-insensitive part of I(K) could include K(V)1, K(V)3, and/or M-current channels (KCNQ2/3). Combining ScTx and dendrotoxin confirmed a relevant contribution of K(V)2 and K(V)2/K(V)S, and K(V)1 subunits to I(K) in small mouse DRG neurons. After application of these toxins, a significant TEA-sensitive current (~19% of total I(K)) remained with biophysical properties that corresponded to those of K(V)3 currents obtained in expression systems. Using RT-PCR, we detected K(V)3.1-3 mRNA in DRG neurons. Furthermore, Western blot and immunocytochemistry using K(V)3.1-specific antibodies confirmed the presence of K(V)3.1 in cultured DRG neurons. These biophysical, pharmacological, and molecular results demonstrate a relevant contribution (~19%) of K(V)3-containing channels to I(K) in small mouse DRG neurons, supporting a substantial role for K(V)3 subunits in these neurons. 相似文献
14.
15.
《Channels (Austin, Tex.)》2013,7(5):298-306
Proper function of Cav1.4 L-type calcium channels is crucial for neurotransmitter release in the retina. Our understanding about how different levels of Cav1.4 channel activity affect retinal function is still limited. In the gain-of-function mouse model Cav1.4-IT we expected a reduction in the photoreceptor dynamic range but still transmission toward retinal ganglion cells. A fraction of Cav1.4-IT ganglion cells responded to light stimulation in multielectrode array recordings from whole-mounted retinas, but showed a significantly delayed response onset. Another significant number of cells showed higher activity in darkness. In addition to structural remodeling observed at the first retinal synapse of Cav1.4-IT mice the functional data suggested a loss of contrast enhancement, a fundamental feature of our visual system. In fact, Cav1.4-IT mouse retinas showed a decline in spatial response and changes in their contrast sensitivity profile. Photoreceptor degeneration was obvious from the nodular structure of cone axons and enlarged pedicles which partly moved toward the outer nuclear layer. Loss of photoreceptors was also expressed as reduced expression of proteins involved in chemical and electrical transmission, as such metabotropic glutamate receptor mGluR6 and the gap junction protein Connexin 36. Such gross changes in retinal structure and function could also explain the diminished visual performance of CSNB2 patients. The expression pattern of the plasma-membrane calcium ATPase 1 which participates in the maintenance of the intracellular calcium homeostasis in photoreceptors was changed in Cav1.4-IT mice. This might be part of a protection mechanism against increased calcium influx, as this is suggested for Cav1.4-IT channels. 相似文献
16.
Yu. A. Kolodin N. S. Veselovsky N. N. Veselovskaya S. A. Fedulova 《Neurophysiology》2007,39(4-5):334-336
The electrical activity of rat retinal ganglion cells is described. It was found that most such cells generate tonic discharges, while cells that demonstrate a phasic type of activity are less numerous. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 382–384, July–October, 2007. 相似文献
17.
Dagmar Knoflach Klaus Schicker Martin Gl?smann Alexandra Koschak 《Channels (Austin, Tex.)》2015,9(5):298-306
Proper function of Cav1.4 L-type calcium channels is crucial for neurotransmitter release in the retina. Our understanding about how different levels of Cav1.4 channel activity affect retinal function is still limited. In the gain-of-function mouse model Cav1.4-IT we expected a reduction in the photoreceptor dynamic range but still transmission toward retinal ganglion cells. A fraction of Cav1.4-IT ganglion cells responded to light stimulation in multielectrode array recordings from whole-mounted retinas, but showed a significantly delayed response onset. Another significant number of cells showed higher activity in darkness. In addition to structural remodeling observed at the first retinal synapse of Cav1.4-IT mice the functional data suggested a loss of contrast enhancement, a fundamental feature of our visual system. In fact, Cav1.4-IT mouse retinas showed a decline in spatial response and changes in their contrast sensitivity profile. Photoreceptor degeneration was obvious from the nodular structure of cone axons and enlarged pedicles which partly moved toward the outer nuclear layer. Loss of photoreceptors was also expressed as reduced expression of proteins involved in chemical and electrical transmission, as such metabotropic glutamate receptor mGluR6 and the gap junction protein Connexin 36. Such gross changes in retinal structure and function could also explain the diminished visual performance of CSNB2 patients. The expression pattern of the plasma-membrane calcium ATPase 1 which participates in the maintenance of the intracellular calcium homeostasis in photoreceptors was changed in Cav1.4-IT mice. This might be part of a protection mechanism against increased calcium influx, as this is suggested for Cav1.4-IT channels. 相似文献
18.
We labeled proteins in the cell bodies of rabbit retinal ganglion cells with [35S]methionine and subsequently observed the appearance of radioactive actin in tissues containing the axons and synaptic terminals of these neurons, i.e., the optic nerve (ON), optic tract (OT), lateral geniculate nucleus (LGN) and the superior colliculus (SC). The temporal sequence of appearance of labeled actin (which was identified by its specific binding to DNase I, its electrophoretic mobility, and its peptide map) in these tissues indicated that actin is an axonally transported protein with a maximum transport velocity of 3.4--4.3 mm/d. The kinetics of labeling actin were similar to the kinetics of labeling two proteins (M1 and M2) which resemble myosin; these myosin-like proteins were previously found to be included in the groups of proteins (groups III and IV) transported with the third and fourth most rapid maximum velocities. The similarity in transport between actin and myosin-like proteins supports the idea that a number of proteins in the third and fourth transport groups may be functionally related by virtue of their involvement in a force-generating mechanism and suggests the possibility that these proteins may be axonally transported as a preformed force-generating unit. 相似文献
19.
Sei-ichi Tsujimura Kazuhiko Ukai Daisuke Ohama Atsuo Nuruki Kazutomo Yunokuchi 《Proceedings. Biological sciences / The Royal Society》2010,277(1693):2485-2492
The recent discovery of melanopsin-containing retinal ganglion cells (mRGCs) has led to a fundamental reassessment of non-image forming processing, such as circadian photoentrainment and the pupillary light reflex. In the conventional view of retinal physiology, rods and cones were assumed to be the only photoreceptors in the eye and were, therefore, considered responsible for non-image processing. However, signals from mRGCs contribute to this non-image forming processing along with cone-mediated luminance signals; although both signals contribute, it is unclear how these signals are summed. We designed and built a novel multi-primary stimulation system to stimulate mRGCs independently of other photoreceptors using a silent-substitution technique within a bright steady background. The system allows direct measurements of pupillary functions for mRGCs and cones. We observed a significant change in steady-state pupil diameter when we varied the excitation of mRGC alone, with no change in luminance and colour. Furthermore, the change in pupil diameter induced by mRGCs was larger than that induced by a variation in luminance alone: that is, for a bright steady background, the mRGC signals contribute to the pupillary pathway by a factor of three times more than the L- and M-cone signals. 相似文献
20.
Recent work suggests that mammalian retinal ganglion cells may become more like developing ganglion cells in form while regenerating through a peripheral nerve graft. We have injected Lucifer Yellow into regenerating ganglion cells of goldfish to look for similar changes. Within three weeks of injury, we saw dye-coupling to nearby cells, which is a common developmental feature in many species. Dendrites and axons, which in most mature ganglion cells are smooth, became varicose and hairy, like those examined in mammalian development. Secondary axons arose later, not only as side-branches of the primary axon but also from the soma, as in mammalian development and regeneration. Since, in fish, these responses are clearly an intrinsic part of functional regeneration, their equivalence in fish and mammals strengthens the view that a similar regenerative competence may exist in the retinal ganglion cells of all vertebrates. 相似文献