首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sites of pH regulation of the urea channel of Helicobacter pylori   总被引:3,自引:0,他引:3  
Helicobacter pylori (Hp) and Streptococcus salivarius (Ss) require intrabacterial urease for acid resistance and express a urea channel, UreI. The presence of UreI was shown to increase urea permeability approximately 300-fold over that of a non-polar ureI deletion mutant. Expression of SsUreI in Xenopus oocytes increased urea uptake pH independently, whereas HpUreI shows an acidic pH dependence, half-maximal at pH 6.0. Mutagenesis of all histidines, aspartates, glutamates and the lysine in the periplasmic domain of HpUreI showed that His-123, His-131, Asp-129, Asp-140, Glu-138 and Lys-132 in the second periplasmic loop (PL2) and His-193 in the C-terminus (Ct) were important for activation of transport. With the exception of a lysine that was shown to substitute for His-193 in HpUreI, these charged amino acids are absent in SsUreI. A chimera in which PL1 of HpUreI was replaced by PL1 of SsUreI retained activity at acidic pH and gained partial activity at neutral pH. Exchange of PL2 inactivated transport, whereas exchange of Ct had no effect. Chimeras, in which either PL1 or PL2 of HpUreI replaced those of SsUreI, retained wild-type transport, but replacement of the Ct or both loops inactivated transport. PL1 appears to be important for restricting transport through HpUreI at neutral pH, whereas protonation of three histidines in PL2 and Ct and the presence of three dicarboxylic amino acids in PL2 appears to be necessary to activate HpUreI at acidic pH.  相似文献   

2.
Z Qi  M Sokabe  K Donowaki    H Ishida 《Biophysical journal》1999,76(2):631-641
Ion conduction properties of a de novo synthesized channel, formed from cyclic octa-peptides consisting of four alternate L-alanine (Ala) and N'-acylated 3-aminobenzoic acid (Aba) moieties, were studied in bilayer membranes. The single-channel conductance was 9 pS in symmetrical 500 mM KCl. The channel favored permeation of cations over anions with a permeability ratio (PCl-/PK+) of 0.15. The selectivity sequence among monovalent cations based on permeability ratio (PX+/PK+) fell into an order: NH4+(1.4) > Cs+(1. 1) >/= K+(1.0) > Na+(0.4) >> Li+(0). The conductance-activity relationship of the channel in K+ solutions followed simple Michaelis-Menten kinetics with a half-maximal saturating activity of 8 mM and a maximal conductance of 9 pS. The permeability ratio PNa+/PK+ remained constant ( approximately 0.40) under biionic concentrations from 10 to 500 mM. These results suggests that the channel is a one-ion channel. The pore diameter probed by a set of organic cations was approximately 6 A. The single-channel current was blocked by Ca2+ in a dose-dependent manner that followed a single-site titration curve with a voltage-dependent dissociation constant of 0.6 mM at 100 mV. The electric distance of the binding site for Ca2+ was 0.07 from both entrances of the channel, indicating the presence of two symmetrical binding sites in each vicinity of the channel entrance. Correlations between conduction properties and structural aspects of the channel are discussed in terms of a three-barrier and two-binding-site (3B2S) model of Eyring rate theory. All available structural information supported an idea that the channel was formed from a tail-to-tail associated dimer of the molecule, the pore of which was lined with hydrophobic acyl chains. This is the first report to have made a systematic analysis of ion permeation through a hydrophobic pore.  相似文献   

3.
In an open circuit there can be no net cation flux through membranes containing only cation-selective channels, because electroneutrality must be maintained. If the channels are so narrow that water and cations cannot pass by each other, then the net water flux through those "single-file" channels that contain a cation is zero. It is therefore possible to determine the cation binding constants from the decrease in the average water permeability per channel as the cation concentration in the solution is increased. Three different methods were used to determine the osmotic water permeability of gramicidin channels in lipid bilayer membranes. The osmotic water permeability coefficient per gramicidin channel in the absence of cations was found to be 6 x 10(-14) cm3/s. As the cation concentration was raised, the water permeability decreased and a binding constant was determined from a quantitative fit to the data. When the data were fitted assuming a maximum of one ion per channel, the dissociation constant was 115 mM for Li+, 69 mM for K+, and 2 mM for Tl+.  相似文献   

4.
The Cystic Fibrosis Conductance Regulator (CFTR) functions as a cAMP-activated, anion-selective channel, but the structural basis for anion permeation is not well understood. Here we summarize recent studies aimed at understanding how anions move through the CFTR channel, and the nature of the environment anions experience inside the pore. From these studies it is apparent that anion permeability selectivity and anion binding selectivity of the pore are consistent with a model based on a "dielectric tunnel." The selectivity pattern for halides and pseudohalides can be predicted if it is assumed that permeant anions partition between bulk water and a polarizable space that is characterized by an effective dielectric constant of about 19. Covalent labeling of engineered cysteines and pH titration of engineered cysteines and histidines lead to the conclusion that the CFTR anion conduction path includes a positively charged outer vestibule. A residue in transmembrane segment 6 (TM6) (R334) appears to reside in the outer vestibule of the CFTR pore where it creates a positive electrostatic potential that enhances anion conduction.  相似文献   

5.
Urea permeability of human red cells   总被引:5,自引:1,他引:4       下载免费PDF全文
The rate of unidirectional [14C]urea efflux from human red cells was determined in the self-exchange and net efflux modes with the continuous flow tube method. Self-exchange flux was saturable and followed simple Michaelis-Menten kinetics. At 38 degrees C the maximal self-exchange flux was 1.3 X 10(-7) mol cm-2 s-1, and the urea concentration for half-maximal flux, K1/2, was 396 mM. At 25 degrees C the maximal self-exchange flux decreased to 8.2 X 10(-8) mol cm-2 s-1, and K1/2 to 334 mM. The concentration-dependent urea permeability coefficient was 3 X 10(-4) cm s-1 at 1 mM and 8 X 10(-5) cm s-1 at 800 mM (25 degrees C). The latter value is consonant with previous volumetric determinations of urea permeability. Urea transport was inhibited competitively by thiourea; the half-inhibition constant, Ki, was 17 mM at 38 degrees C and 13 mM at 25 degrees C. Treatment with 1 mM p-chloromercuribenzosulfonate inhibited urea permeability by 92%. Phloretin reduced urea permeability further (greater than 97%) to a "ground" permeability of approximately 10(-6) cm s-1 (25 degrees C). This residual permeability is probably due to urea permeating the hydrophobic core of the membrane by simple diffusion. The apparent activation energy, EA, of urea transport after maximal inhibition was 59 kJ mol-1, whereas in control cells EA was 34 kJ mol-1 at 1 M and 12 kJ mol-1 at 1 mM urea. In net efflux experiments with no extracellular urea, the permeability coefficient remained constantly high, independent of a variation of intracellular urea between 1 and 500 mM, which indicates that the urea transport system is asymmetric. It is concluded that urea permeability above the ground permeability is due to facilitate diffusion and not to diffusion through nonspecific leak pathways as suggested previously.  相似文献   

6.
Dynowski M  Mayer M  Moran O  Ludewig U 《FEBS letters》2008,582(16):2458-2462
Aquaporins and/or aquaglyceroporins regulate the permeability of plant membranes to water and small, uncharged molecules. Using molecular simulations with a plant plasma membrane aquaporin tetramer, the residues in the channel constriction region were identified as the crucial determinants of ammonia and urea conductance. The impact of these residues was experimentally verified using AtPIP2;1 pore mutants. Several, but not all, mutants with a NIP-like selectivity filter promoted yeast growth on urea or ammonia as sole sources of nitrogen. TIP-like mutants conducted urea but not NH(3), and a residue without direct contact to the pore lumen was critical for conduction in the mutants.  相似文献   

7.
Residue ionization and ion transport through OmpF channels   总被引:5,自引:1,他引:4       下载免费PDF全文
Single trimeric channels of the general bacterial porin, OmpF, were reconstituted into planar lipid membranes and their conductance, selectivity, and open-channel noise were studied over a wide range of proton concentrations. From pH 1 to pH 12, channel transport properties displayed three characteristic regimes. First, in acidic solutions, channel conductance is a strong function of pH; it increases by approximately threefold as the proton concentration decreases from pH 1 to pH 5. This rise in conductance is accompanied by a sharp increase in cation transport number and by pronounced open-channel low-frequency current noise with a peak at ~pH 2.5. Random stepwise transients with amplitudes at ~1/5 of the monomer conductance are major contributors to this noise. Second, over the middle range (pH 5 ÷ pH 9), channel conductance and selectivity stay virtually constant; open channel noise is at its minimum. Third, over the basic range (pH 9 ÷ pH 12), channel conductance and cation selectivity start to grow again with an onset of a higher frequency open-channel noise. We attribute these effects to the reversible protonation of channel residues whose pH-dependent charge influences transport by direct interactions with ions passing through the channel.  相似文献   

8.
We previously reported that HgCl2 inhibits water and urea flux in tissues fixed with glutaraldehyde after antidiuretic hormone (ADH) stimulation and suggested that the ADH-induced water channel may share characteristics of the red blood cell and proximal tubule water transport pathway. To determine the specificity of mercury's action, we examined the effect of numerous other metals. In tissues fixed after ADH stimulation, water flow and urea and sucrose permeabilities are maintained from mucosal bath pH 2.5 through pH 12. Several metals including Ba, Co, Fe, Sr and Zn did not alter flux. Al, Cd, La, Li, Pb and U inhibited urea permeability but not water flow. At pH 2.8, Cu inhibited water flow by 30% and urea permeability by 50%. At pH 4.9–7.4, Cu inhibited urea permeability but not water flow. At pH 3.0, Pt inhibited flow in ADH-pretreated tissues. The inhibitory effect was not present at pH>3.0. At pH<3.0, Au inhibited flow by 90% in tissues fixed after pretreatment with ADH but increased the permeability of tissues fixed in the absence of ADH. Ag inhibited flow by 70% but also increased sucrose, urea, and basal permeabilities. This suggests that Ag and Au disrupt epithelial integrity. These results indicate that at physiologic pH, the ADH-induced water channel is specifically blocked by Hg but not by other metals. This specificity may reflect the presence of a large number of sulfhydryl groups in the water channel.  相似文献   

9.
Voltage-sensitive sodium channels and calcium channels are homologous proteins with distinctly different selectivity for permeation of inorganic cations. This difference in function is specified by amino acid residues located within P-region segments that link presumed transmembrane elements S5 and S6 in each of four repetitive Domains I, II, III, and IV. By analyzing the selective permeability of Na+, K+, and Ca2+ in various mutants of the mu 1 rat muscle sodium channel, the results in this paper support the concept that a conserved motif of four residues contributed by each of the Domains I-IV, termed the DEKA locus in sodium channels and the EEEE locus in calcium channels, determines the ionic selectivity of these channels. Furthermore, the results indicate that the Lys residue in Domain III of the sodium channel is the critical determinant that specifies both the impermeability of Ca2+ and the selective permeability of Na+ over K+. We propose that the alkylammonium ion of the Lys(III) residue acts as an endogenous cation within the ion binding site/selectivity filter of the sodium channel to tune the kinetics and affinity of inorganic cation binding within the pore in a manner analogous to ion-ion interactions that occur in the process of multi-ion channel conduction.  相似文献   

10.
The sarcoplasmic reticulum Ca(2+)-release channel plays a central role in cardiac muscle function by providing a ligand-regulated pathway for the release of sequestered Ca2+ to initiate contraction following cell excitation. The efficiency of the channel as a Ca(2+)-release pathway will be influenced by both gating and conductance properties of the system. In the past we have investigated conduction and discrimination of inorganic mono- and divalent cations with the aim of describing the mechanisms governing ion handling in the channel (Tinker, A., A.R. G. Lindsay, and A.J. Williams. 1992. Journal of General Physiology. 100:495-517.). In the present study, we have used permeant and impermeant organic cations to provide additional information on structural features of the conduction pathway. The use of permeant organic cations in biological channels to explore structural motifs underlying selectivity has been an important tool for the electrophysiologist. We have examined the conduction properties of a series of monovalent organic cations of varying size in the purified sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel. Relative permeability, determined from the reversal potential measured under bi- ionic conditions with 210-mM test cation at the cytoplasmic face of the channel and 210 mM K+ at the luminal, was related inversely to the minimum circular cation radius. The reversal potential was concentration-independent. The excluded area hypothesis, with and without a term for solute-wall friction, described the data well and gave a lower estimate for minimum pore radius of 3.3-3.5 A. Blocking studies with the impermeant charged derivative of triethylamine reveal that this narrowing occurs over the first 10-20% of the voltage drop when crossing from the lumen of the SR to the cytoplasm. Single-channel conductances were measured in symmetrical 210 mM salt. Factors other than relative permeability determine conductance as ions with similar relative permeability can have widely varying single-channel conductance. Permeant ions, such as the charged derivatives of trimethylamine and diethylmethylamine, can also inhibit K+ current. The reduction in relative conductance with increasing concentrations of these two ions at a holding potential of 60 mV was described by a rectangular hyperbola and revealed higher affinity binding for diethylmethylamine as compared to trimethylamine. It was possible to describe the complex permeation properties of these two ions using a single-ion four barrier, three binding site Eyring rate theory model. In conclusion, these studies reveal that the cardiac Ca(2+)-release channel has a selectivity filter of approximately 3.5-A radius located at the luminal face of the protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Summary The two histidine residues of COOH-terminal channel-forming peptides of colicin E1 were modified by addition of a carbethoxy group through pretreatment with diethylpyrocarbonate. The consequences of the modification were examined by the action of the altered product on both phospholipid vesicles and planar membranes. At pH 6, where activity is low, histidine modification resulted in a decrease of the single channel conductance from 20 pS to approximately 9 pS and a decrease in the selectivity for sodium relative to chloride, showing that histidine modification affected the permeability properties of the channel. At pH 4, where activity is high, the single channel conductance and ion selectivity were not significantly altered by histidine modification. The histidine modification assayed at pH 4 resulted in a threefold increase in the rate of Cl efflux from asolectin vesicles, and a similar increase in conductance assayed with planar membranes. This conductance increase was inferred to arise from an increase in the fraction of bound histidine-modified colicin molecules forming channels at pH 4, since the increase in activity was not due to (i) an increase in binding of the modified peptide, (ii) a change in ion selectivity, (iii) a change of single channel conductance, or (iv) a change in the pH dependence of binding. The sole cysteine in the colicin molecule was modified in 6m urea with 5,5-dithiobis(2-nitrobenzoic acid). The activities of the colicin and its COOH-terminal tryptic peptide were found to be unaffected by cysteine modification, arguing against a role of (-SH) groups in protein insertion and/or channel formation.  相似文献   

12.
Volume changes were studied in Beta vulgaris storage root vacuoles, using video microscopy, when exposed to hypotonic conditions. The osmotic gradient was either step-applied or progressively imposed in perfusion experiments. Preincubation at low pH (6.6) or with HgCl2 strongly reduced the vacuoles' water permeability, measured in step experiments. Furthermore, the volumetric response depended on the rate with which the aniso-osmotic condition was established. In perfusion experiments a "plateau value" (osmotic equilibrium or steady-state volume value) was observed, which was significantly lower than the theoretically expected one. Furthermore, if vacuoles were preincubated in presence of HgCl2 or at low pH and then the hypo-osmotic challenge was applied in perfusion experiments, a still lower "plateau value" was observed. This reduction was concentration-dependent and completely reversible. In these conditions, when HgCl2 concentration was 300 mM or medium pH was 6.6, the volume change was abolished. In other experiments, when urea iso-osmotically replaced mannitol, a reversible, pH-dependent volumetric response was observed. These results can be interpreted accepting that 1) mercury-sensitive water channels, present in the studied structure, were blocked by low pH during the hypo-osmotic challenge; 2) modification of water permeability prevents excessive swelling during the osmotic shock; 3) the effectiveness of this last mechanism depended on the osmotic challenge rate; and 4) additionally, urea reflection coefficients were also modified by reduced medium pH.  相似文献   

13.
We investigated the features of the inward-rectifier K channel Kir1.1 (ROMK) that underlie the saturation of currents through these channels as a function of permeant ion concentration. We compared values of maximal currents and apparent K(m) for three permeant ions: K(+), Rb(+), and NH(4)(+). Compared with K(+) (i(max) = 4.6 pA and K(m) = 10 mM at -100 mV), Rb(+) had a lower permeability, a lower i(max) (1.8 pA), and a higher K(m) (26 mM). For NH(4)(+), the permeability was reduced more with smaller changes in i(max) (3.7 pA) and K(m) (16 mM). We assessed the role of a site near the outer mouth of channel in the saturation process. This site could be occupied by either permeant ions or low-affinity blocking ions such as Na(+), Li(+), Mg(2+), and Ca(2+) with similar voltage dependence (apparent valence, 0.15-0.20). It prefers Mg(2+) over Ca(2+) and has a monovalent cation selectivity, based on the ability to displace Mg(2+), of K(+) > Li(+) ~ Na(+) > Rb(+) ~ NH(4)(+). Conversely, in the presence of Mg(2+), the K(m) for K(+) conductance was substantially increased. The ability of Mg(2+) to block the channels was reduced when four negatively charged amino acids in the extracellular domain of the channel were mutated to neutral residues. The apparent K(m) for K(+) conduction was unchanged by these mutations under control conditions but became sensitive to the presence of external negative charges when residual divalent cations were chelated with EDTA. The results suggest that a binding site in the outer mouth of the pore controls current saturation. Permeability is more affected by interactions with other sites within the selectivity filter. Most features of permeation (and block) could be simulated by a five-state kinetic model of ion movement through the channel.  相似文献   

14.
The effect of the plant alkaloid aconitine on sodium channel kinetics, ionic selectivity, and blockage by protons and tetrodotoxin (TTX) has been studied in frog skeletal muscle. Treatment with 0.25 or 0.3 mM aconitine alters sodium channels so that the threshold of activation is shifted 40-50 mV in the hyperpolarized direction. In contrast to previous results in frog nerve, inactivation is complete for depolarizations beyond about -60 mV. After aconitine treatment, the steady state level of inactivation is shifted approximately 20 mV in the hyperpolarizing direction. Concomitant with changes in channel kinetics, the relative permeability of the sodium channel to NH4,K, and Cs is increased. This altered selectivity is not accompanied by altered block by protons or TTX. The results suggest that sites other than those involved in channel block by protons and TTX are important in determining sodium channel selectivity.  相似文献   

15.
The conductance and selectivity of the Ca-activated K channel in cultured rat muscle was studied. Shifts in the reversal potential of single channel currents when various cations were substituted for Ki+ were used with the Goldman-Hodgkin-Katz equation to calculate relative permeabilities. The selectivity was Tl+ greater than K+ greater than Rb+ greater than NH4+, with permeability ratios of 1.2, 1.0, 0.67, and 0.11. Na+, Li+, and Cs+ were not measurably permeant, with permeabilities less than 0.05 that of K+. Currents with the various ions were typically less than expected on the basis of the permeability ratios, which suggests that the movement of an ion through the channel was not independent of the other ions present. For a fixed activity of Ko+ (77 mM), plots of single channel conductance vs. activity of Ki+ were described by a two-barrier model with a single saturable site. This observation, plus the finding that the permeability ratios of Rb+ and NH+4 to K+ did not change with ion concentration, is consistent with a channel that can contain a maximum of one ion at any time. The empirically determined dissociation constant for the single saturable site was 100 mM, and the maximum calculated conductance for symmetrical solutions of K+ was 640 pS. TEAi+ (tetraethylammonium ion) reduced single channel current amplitude in a voltage-dependent manner. This effect was accounted for by assuming voltage-dependent block by TEA+ (apparent dissociation constant of 60 mM at 0 mV) at a site located 26% of the distance across the membrane potential, starting at the inner side. TEAo+ was much more effective in reducing single channel currents, with an apparent dissociation constant of approximately 0.3 mM.  相似文献   

16.
The water permeability of aquaporins (AQPs) varies by more than an order of magnitude even though the pore structure, geometry, as well as the channel lining residues are highly conserved. However, channel gating by pH, divalent ions or phosphorylation was only shown for a minority of AQPs. Structural and in silico indications of water flux modulation by flexible side chains of channel lining residues have not been experimentally confirmed yet. Hence, the aquaporin “open state” is still considered to be a continuously open pore with water molecules permeating in a single‐file fashion. Using protein mutations outside the selectivity filter in the aqua(glycerol)facilitator GlpF of Escherichia coli we, to the best of our knowledge, for the first time, modulate the position of the highly conserved Arg in the selectivity filter. This in turn enhances or reduces the unitary water permeability of GlpF as shown in silico by molecular dynamics (MD) simulations and in vitro with purified and reconstituted GlpF. This finding suggests that AQP water permeability can indeed be regulated by lipid bilayer asymmetry and the transmembrane potential. Strikingly, our long‐term MD simulations reveal that not only the conserved Arg in the selectivity filter, but the position and dynamics of multiple other pore lining residues modulate water passage through GlpF. This finding is expected to trigger a wealth of future investigations on permeability and regulation of AQPs among others with the aim to tune water permeability for biotechnological applications.  相似文献   

17.
Single channel and whole cell recordings were used to study ion permeation through Ca channels in isolated ventricular heart cells of guinea pigs. We evaluated the permeability to various divalent and monovalent cations in two ways, by measuring either unitary current amplitude or reversal potential (Erev). According to whole cell measurements of Erev, the relative permeability sequence is Ca2+ greater than Sr2+ greater than Ba2+ for divalent ions; Mg2+ is not measurably permeant. Monovalent ions follow the sequence Li+ greater than Na+ greater than K+ greater than Cs+, and are much less permeant than the divalents. These whole cell measurements were supported by single channel recordings, which showed clear outward currents through single Ca channels at strong depolarizations, similar values of Erev, and similar inflections in the current-voltage relation near Erev. Information from Erev measurements stands in contrast to estimates of open channel flux or single channel conductance, which give the sequence Na+ (85 pS) greater than Li+ (45 pS) greater than Ba2+ (20 pS) greater than Ca2+ (9 pS) near 0 mV with 110-150 mM charge carrier. Thus, ions with a higher permeability, judged by Erev, have lower ion transfer rates. In another comparison, whole cell Na currents through Ca channels are halved by less than 2 microM [Ca]o, but greater than 10 mM [Ca]o is required to produce half-maximal unitary Ca current. All of these observations seem consistent with a recent hypothesis for the mechanism of Ca channel permeation, which proposes that: ions pass through the pore in single file, interacting with multiple binding sites along the way; selectivity is largely determined by ion affinity to the binding sites rather than by exclusion by a selectivity filter; occupancy by only one Ca ion is sufficient to block the pore's high conductance for monovalent ions like Na+; rapid permeation by Ca ions depends upon double occupancy, which only becomes significant at millimolar [Ca]o, because of electrostatic repulsion or some other interaction between ions; and once double occupancy occurs, the ion-ion interaction helps promote a quick exit of Ca ions from the pore into the cell.  相似文献   

18.
19.
In the kidney proximal tubule, acidification of the glomerular filtrate leads to an inhibition of inorganic phosphate (P(i)) reabsorption by type II Na(+)-coupled cotransporters (NaPi-II). As external pH also alters the divalent/monovalent P(i) ratio, it has been difficult to separate putative proton interactions with the cotransporter from direct titration of divalent P(i), the preferred species transported. To distinguish between these possibilities and identify pH-sensitive transitions in the cotransport cycle, the pH-dependent kinetics of two NaPi-II isoforms, expressed in Xenopus laevis oocytes, were investigated electrophysiologically. At -50 mV, both isoforms showed >70% suppression of electrogenic response for an external pH change from 8.0 to 6.2, not attributable to titration of divalent P(i). This was accompanied by a progressive removal of steady-state voltage dependence. The NaPi-II-related uncoupled slippage current was unaffected by a pH change from 7.4 to 6.2, with no shift in the reversal potential, which suggested that protons do not function as substrate. The voltage-dependence of pre-steady-state relaxations was shifted to depolarizing potentials in 100 mM and 0 mM Na(ext)(+) and two kinetic components were resolved, the slower of which was pH-dependent. The changes in kinetics are predicted by a model in which protons interact with the empty carrier and final Na(+) binding step.  相似文献   

20.
We previously showed that the water permeability of AQP0, the water channel of the lens, increases with acid pH and that His40 is required (Németh-Cahalan, K.L., and J.E. Hall. 2000. J. Biol. Chem. 275:6777-6782; Németh-Cahalan, K.L., K. Kalman, and J.E. Hall. 2004. J. Gen. Physiol. 123:573-580). We have now investigated the effect of zinc (and other transition metals) on the water permeability of AQP0 expressed in Xenopus oocytes and determined the amino acid residues that facilitate zinc modulation. Zinc (1 mM) increased AQP0 water permeability by a factor of two and prevented any additional increase induced by acid pH. Zinc had no effect on water permeability of AQP1, AQP4 or MIPfun (AQP0 from killifish), or on mutants of AQP1 and MIPfun with added external histidines. Nickel, but not copper, had the same effect on AQP0 water permeability as zinc. A fit of the concentration dependence of the zinc effect to the Hill equation gives a coefficient greater than three, suggesting that binding of more than one zinc ion is necessary to enhance water permeability. His40 and His122 are necessary for zinc modulation of AQP0 water permeability, implying structural constraints for zinc binding and functional modulation. The change in water permeability was highly sensitive to a coinjected zinc-insensitive mutant and a single insensitive monomer completely abolished zinc modulation. Our results suggest a model in which positive cooperativity among subunits of the AQP0 tetramer is required for zinc modulation, implying that the tetramer is the functional unit. The results also offer the possibility of a pharmacological approach to manipulate the water permeability and transparency of the lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号