首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of Tn1 transposition has been shown to increase considerably in course of bacterial conjugation. Usually, the frequency of Tn1 transposition from plasmid pSA2001, a derivative of RP4, into the chromosome never exceeded 0.1% per cell. Percentage of His+ transconjugants, marked by transposon Tn1 during conjugation between Hfr donor, carrying plasmid pSA2001, and auxotrophic recipient, was about 30%. Transposon Tn1 transfer into the recipient cells does not depend on the recA+ gene function in donor cells or on conjugative transfer of plasmid pSA2001. The transfer requires the recA+ gene function in recipients as well as the Hfr function in donor cells. Southern's blot-hybridization revealed the insertion of transposon Tn1 into the different sites of the chromosome of His+ transconjugants. The transposon inserted during conjugation retains the ability to potential further translocation into new sites on the chromosomal DNA.  相似文献   

2.
Streptococcus lactis subsp. diacetylactis strain WM4 transferred lactose-fermenting and bacteriocin-producing (Bac+) abilities to S. lactis LM2301, a lactose-negative, streptomycin-resistant (Lac- Strr), plasmid-cured derivative of S. lactis C2. Three types of transconjugants were obtained: Lac+ Bac+, Lac+ Bac-, and Lac-Bac+.S. diacetylactis WM4 possessed plasmids of 88, 33, 30, 5.5, 4.8, and 3.8 megadaltons (Mdal). In Lac+ Bac+ transconjugants, lactose-fermenting ability was linked to the 33-Mdal plasmid and bacteriocin-producing ability to the 88-Mdal plasmid. Curing the 33-Mdal plasmid from Lac+ Bac+ transconjugants resulted in loss of lactose-fermenting ability but not bacteriocin-producing ability (Lac- Bac+). These strains retained the 88-Mdal plasmid. Curing of both plasmids resulted in a Lac- Bac- phenotype. The Lac+ Bac- transconjugant phenotype was associated with a recombinant plasmid of 55 or 65 Mdal. When these transconjugants were used as donors in subsequent matings, the frequency of Lac transfer was about 2.0 X 10(-2) per recipient plated, whereas when Lac+ Bac+ transconjugants served as donors, the frequency of Lac transfer was about 2.0 X 10(-5) per recipient plated. Also, Lac- Bac+ transconjugants were found to contain the 88-Mdal plasmid. The data indicate that the ability of WM4 to produce bacteriocin is linked to an 88-Mdal conjugative plasmid and that lactose-fermenting ability resides on a 33-Mdal plasmid.  相似文献   

3.
A mutant, strain PK10, of Streptomyces azureus ATCC 14921 and its two plasmids were characterized and compared with another mutant, PK 100, and its plasmid. One PK 10 plasmid of 8.8 kb was identical to a pock-forming plasmid, pSA1.1, of PK100. The other olasmid which was found only in PK10 nd named pSA1.2 (size, 7.6 kb), was a non-pock forming derivative of pSA1.1 with deletions in two different regions (about 1.2 kb and 30 b long). The pcok-forming ability of strain PK10 on a plasmid-free strain was lower than that of strain PK100 which contained only pSA1.1. Strain PK10 had fewer copies of pSA1.1 than strain PK100, and had normal spore formation and thiostrepton production, which were depressed in the strain PK100. The pSA1.1 from both PK10 and PK100 amplified to 20 to 30 copies in the transformants and inhibited theri spore formation and thiostrepton production. Thus, the function of pSA1.1 appeared to be depressed by pSA1.2.  相似文献   

4.
Streptococcus faecalis strain DS16 harbors the conjugative hemolysin-bacteriocin plasmid pAD1 (35 megadaltons) and the nonconjugative R-plasmid pAD2 determining resistance to streptomycin, kanamycin, and erythromycin; a tetracycline resistance (Tetr) determinant is located on the chromosome. When strain DS16 was mated (on membrane filters) with the plasmid-free strain JH2-2, Tetr transconjugants could be obtained at a frequency of about 10(-6) per recipient. Analyses of transconjugants showed that some contained the Tetr determinant linked to pAD1. Subsequent studies showed that the Tetr determinant was located on a 10-megaldalton transposon, designated Tn916, which could insert into two hemolysin plasmids: pAM gamma 1 and pOB1. In addition, derivatives of DS16 devoid of pAD1 were capable of transferring Tetr to recipient strains. Transconjugants (plasmid-free) from such matings could subsequently act as donors in the transfer of Tetr. Both transposition and transfer were found to be rec independent.  相似文献   

5.
An insertion sequence (IS) element from Lactobacillus johnsonii was isolated, characterized, and exploited to construct an IS-based integration vector. L. johnsonii NCK61, a high-frequency conjugal donor of bacteriocin production (Laf+) and immunity (Lafr), was transformed to erythromycin resistance (Emr) with the shuttle vector pSA3. The NCK61 conjugative functions were used to mobilize pSA3 into a Laf- Lafs EMs recipient. DNA from the Emr transconjugants transformed into Escherichia coli MC1061 yielded a resolution plasmid with the same size as that of pSA3 with a 1.5-kb insertion. The gram-positive replication region of the resolution plasmid was removed to generate a pSA3-based suicide vector (pTRK327) bearing the 1.5-kb insert of Lactobacillus origin. Plasmid pTRK327 inserted randomly into the chromosomes of both Lactobacillus gasseri ATCC 33323 and VPI 11759. No homology was detected between plasmid and total host DNAs, suggesting a Rec-independent insertion. The DNA sequence of the 1.5-kb region revealed the characteristics of an IS element (designated IS1223): a length of 1,492 bp; flanking, 25-bp, imperfect inverted repeats; and two overlapping open reading frames (ORFs). Sequence comparisons revealed 71.1% similarity, including 35.7% identity, between the deduced ORFB protein of the E. coli IS element IS150 and the putative ORFB protein encoded by the Lactobacillus IS element. A putative frameshift site was detected between the overlapping ORFs of the Lactobacillus IS element. It is proposed that, similar to IS150, IS1223 produces an active transposase via translational frameshifting between two tandem, overlapping ORFs.  相似文献   

6.
Bacteroides fragilis V479-1 (also designated strain 92) has previously been shown to contain a conjugative plasmid, pBF4, that specifies resistance to clindamycin (Cc). A report of inducible tetracycline (Tc) resistance in this strain suggested that this phenotype was also plasmid associated (G. Privitera et al., Nature [London] 278:657-659, 1979) and prompted further investigation. Mating experiments with V469-1 and a Cc-sensitive derivative of V479-1, V598, showed that Tc resistance transfer occurred by a conjugation-like event which was insensitive to DNase, was not mediated by donor culture cell-free filtrates, and required cell-to-cell contact. Results from transfer experiments with V479-1 indicated that Tc and Cc resistance determinants were not linked and segregated independently in matings. Progeny recovered from matings with the V479-1 or V598 donor strain were able to transfer the Tc resistance marker in secondary crosses. Tc resistance transfer from V479-1 or V598 was greatly stimulated by pregrowth in the presence of Tc but not Cc. pBF4-mediated Cc resistance transfer was not affected by pregrowth in the presence of Cc or Tc. Filter blot DNA hybridization studies revealed that pBF4 sequences were not involved in either the Tc resistant phenotype or its associated conjugal transfer properties. The Tc resistance transfer element was not associated with pBF4 or any other extrachromosomal DNA element.  相似文献   

7.
Transferable 5-nitroimidazole resistance in the Bacteroides fragilis group   总被引:8,自引:0,他引:8  
We report the characterization of a strain of Bacteroides vulgatus, BV17, that exhibits a moderate resistance to 5-nitroimidazoles and carries plasmids of 4.5, 5, 7.7, and 56 kb. A genetic determinant involved in this resistance is carried by the 7.7 +/- 0.2-kb plasmid (pIP417). This plasmid can be introduced and replicated in a sensitive strain of B. fragilis 638R by transformation or by conjugation. In the latter case, the transfer may involve mobilization by the 56-kb conjugative plasmid (pIP418) regularly found in transconjugants but not in transformants.  相似文献   

8.
A new isolate of Nocardia opaca was obtained by enrichment culture for aerobic lithoautotrophic growth on CO2 and H2. This strain, MR22, is very similar to N. opaca MR11 (formerly 1b) in functioning as a donor for genetic information determining the ability to grow lithoautotrophically (Aut character) in matings with Aut- strains of N. opaca or closely related heterotrophic species. The strain contains a plasmid, pHG33 of about 110 kb. A mutant was isolated from strain MR22 which was plasmid-free, and had lost the Aut character, resistance to 50 microM-thallium salt and susceptibility to the nocardia-specific bacteriophage phi B1. As a recipient of the Aut character, this plasmid-free mutant was as well suited as plasmid-bearing Aut- strains of N. opaca. In matings with the mutant as recipient the frequency of Aut+ transconjugants per donor was 3 X 10(-4) with N. opaca MR11 (pHG31-a, Aut+, Tlr, Strs, phi B1s) and 2 X 10(-3) with N. opaca MR22 (pHG33, Aut+, Tlr, Strs, phi B1r) as donor. Phenotypic characterization of the transconjugants, which had been selected for the Aut marker, revealed that in many cases the Aut marker had been transferred without plasmid transfer. Furthermore, plasmid-free, Aut+ transconjugants functioned as donors for the Aut marker. Both plasmid-free and plasmid-bearing transconjugants transferred the Aut marker to the Aut- strains of N. opaca with a frequency which was one or two orders of magnitude higher than that of the wild-type strains. The plasmids pHG31-a and pHG33 code for thallium resistance (50 microM-thallium acetate). The frequency of thallium-resistant transconjugants was 10(-1) to 10(-2) per donor; all thallium-resistant transconjugants contained the donor plasmid. We conclude that the plasmids pHG31-a of strain MR11 and pHG33 of strain MR22 of N. opaca carry the genetic information for thallium resistance but not the Aut character. As plasmid-free Aut+ strains can function as donors the Aut character is assumed to reside on the chromosome and to function as an independent self-transmissible genetic element.  相似文献   

9.
Prior to gene transfer experiments performed with nonsterile soil, plasmid pJP4 was introduced into a donor microorganism, Escherichia coli ATCC 15224, by plate mating with Ralstonia eutropha JMP134. Genes on this plasmid encode mercury resistance and partial 2, 4-dichlorophenoxyacetic acid (2,4-D) degradation. The E. coli donor lacks the chromosomal genes necessary for mineralization of 2,4-D, and this fact allows presumptive transconjugants obtained in gene transfer studies to be selected by plating on media containing 2,4-D as the carbon source. Use of this donor counterselection approach enabled detection of plasmid pJP4 transfer to indigenous populations in soils and under conditions where it had previously not been detected. In Madera Canyon soil, the sizes of the populations of presumptive indigenous transconjugants were 10(7) and 10(8) transconjugants g of dry soil(-1) for samples supplemented with 500 and 1,000 microg of 2,4-D g of dry soil(-1), respectively. Enterobacterial repetitive intergenic consensus PCR analysis of transconjugants resulted in diverse molecular fingerprints. Biolog analysis showed that all of the transconjugants were members of the genus Burkholderia or the genus Pseudomonas. No mercury-resistant, 2, 4-D-degrading microorganisms containing large plasmids or the tfdB gene were found in 2,4-D-amended uninoculated control microcosms. Thus, all of the 2,4-D-degrading isolates that contained a plasmid whose size was similar to the size of pJP4, contained the tfdB gene, and exhibited mercury resistance were considered transconjugants. In addition, slightly enhanced rates of 2,4-D degradation were observed at distinct times in soil that supported transconjugant populations compared to controls in which no gene transfer was detected.  相似文献   

10.
The conjugative 63-kb lactococcal plasmid pMRC01 encodes bacteriophage resistance and production of and immunity to a novel broad-spectrum bacteriocin, designated lacticin 3147 (M.P. Ryan, M.C. Rea, C. Hill, and R.P. Ross, Appl. Environ. Microbiol. 62:612-619, 1996). The phage resistance is an abortive infection mechanism which targets the phage-lytic cycle at a point after phage DNA replication. By using the genetic determinants for bacteriocin immunity encoded on the plasmid as a selectable marker, pMRC01 was transferred into a variety of lactococcal starter cultures to improve their phage resistance properties. Selection of resulting transconjugants was performed directly on solid media containing the bacteriocin. Since the starters exhibited no spontaneous resistance to the bacteriocin as a selective agent, this allowed the assessment of the transfer of the naturally occurring plasmid into a range of dairy starter cultures. Results demonstrate that efficient transfer of the plasmid was dependent on the particular recipient strain chosen, and while high-frequency transfer (10(-3) per donor) of the entire plasmid to some strains was observed, the plasmid could not be conjugated into a number of starters. In this study, transconjugants for a number of lactococcal starter cultures which are phage resistant and bacteriocin producing have been generated. This bacteriocin-producing phenotype allows for control of nonstarter flora in food fermentations, and the phage resistance property protects the starter cultures in industry. The 63-kb plasmid was also successfully transferred into Lactococcus lactis MG1614 cells via electroporation.  相似文献   

11.
A colicin plasmid in Escherichia coli strain B177 isolated from a septicemic calf was characterized. The colicin type was identified as ColV by using reference ColV producers. The colicin plasmid was labeled with transposon Tn903 and subjected to conjugation. The transconjugants examined suggest that the colicin plasmid confers serum resistance. There was no difference in siderophore utilization ability between the transconjugants and host strain SF800. Bioassay for siderophore suggests that the colicin plasmid specifies the production of iron-chelating compounds available for the host strain.  相似文献   

12.
Transposons Tn501 (specifying mercury resistance) and Tn7 (specifying resistance to trimethoprim and streptomycin) were introduced into extra-slow-growing Rhizobium japonicum by conjugal transfer of the 82 kilobase chimeric plasmid pUW942. Mercury-resistant transconjugants were obtained at a frequency of 10 to 10. The transfer frequency of streptomycin resistance was lower than that of mercury resistance, and Tn7 was relatively unstable. pUW942 was not maintained as an autonomously replicating plasmid in R. japonicum strains. However, some of the Hg transconjugants from the RJ19FY, RJ17W, and RJ12S strains acquired antibiotic markers of the vector plasmid pUW942. Southern hybridization of plasmid and chromosomal DNA of R. japonicum strains with P-labeled pUW942 and pAS8Rep-1, the same plasmid as pUW942 except that it does not contain Tn501, revealed the formation of cointegrates between pUW942 and the chromosome of R. japonicum. More transconjugants with only Tn501 insertions in plasmids or the chromosome were obtained in crosses with strains RJ19FY and RJ17W than with RJ12S. These retained stable Hg both in plant nodules and under nonselective in vitro growth conditions. One of the RJ19FY and two of the RJ12S Hg transconjugants with vector plasmid-chromosome cointegrates conjugally transferred plasmids of 82, 84 or 86, and 90 kilobases, respectively, into plasmidless Escherichia coli C. These plasmids strongly hybridized to pUW942 and EcoRI digests of total DNA of each respective R. japonicum strain but not to indigenous plasmid DNA of the R. japonicum strains. These R' plasmids consisted of pUW942-specific EcoRI fragments and an additional one or two new fragments derived from the R. japonicum chromosome.  相似文献   

13.
14.
Bacteroides fragilis TMP10, which is clindamycin-erythromycin resistant (Clnr) and tetracycline resistant (Tetr), contains several plasmids and is capable of transferring drug resistance markers to suitable recipients. We were able to separate a 14.6-kilobase self-transmissible Clnr plasmid, pBFTM10, from the other plasmids of TMP10 in a tetracycline-sensitive recipient strain, B. fragilis TM4000. All Clnr transconjugants acquired an unaltered pBFTM10 and became plasmid donor strains. Transfer is proposed to occur by conjugation since it required to cell-to-cell contact of filter matings and was insensitive to DNase, but sensitive to chloroform treatment of donor cells. The efficiency of transfer of pBFTM10 in a Tets background (TM4003) was not affected by pretreatment of donor cells with clindamycin. A spontaneously occurring Clns derivative, pBFTM10 delta 1, suffered a deletion of DNA, which included a 4.4-kilobase EcoRI fragment. A complex interaction between the autonomous plasmid pBFTM10 and a tetracycline transfer element also present in strain TMP10 was observed since pretreatment of this donor with tetracycline or clindamycin resulted in a marked increase in transfer of both tetracycline and clindamycin resistance.  相似文献   

15.
H Neve  A Geis    M Teuber 《Journal of bacteriology》1984,157(3):833-838
Thirteen bacteriocin-producing strains of group N (lactic acid) streptococci were screened for their potential to transfer this property by conjugation to Streptococcus lactis subsp. diacetylactis Bu2-60. Bacteriocin production in three strains was plasmid encoded as shown by conjugal transfer and by analysis of cured, bacteriocin-negative derivatives of the donor strains and the transconjugants. With Streptococcus cremoris strains 9B4 and 4G6 and S. lactis subsp. diacetylactis 6F7 as donors, bacteriocin-producing transconjugants were isolated with frequencies ranging from ca. 2 X 10(-2) to 2 X 10(-1) per recipient cell. Bacteriocin-producing transconjugants had acquired a 39.6-megadalton plasmid from the donor strains 9B4 and 4G6, and a 75-megadalton plasmid from the donor strain 6F7. As shown by restriction endonuclease analysis, the plasmids from strains 9B4 and 4G6 were almost identical. The plasmid from strain 6F7 yielded some additional fragments not present in the two other plasmids. In hybridization experiments any of the three plasmids strongly hybridized with each other and with some other bacteriocin but nontransmissible plasmids from other S. cremoris strains. Homology was also detected to a variety of cryptic plasmids in lactic acid streptococci.  相似文献   

16.
Evidence is presented that defective prophage dVcA1 in Vibrio cholerae strain 162 was transposed to the hybrid P::Tn1 plasmid pSJ5. Properties of the resulting conjugative plasmid, pSJ15, indicated that bacteriophage VcA1, like coliphage Mu, can insert at many sites. By analogy with other Hfr-like donors, the high-frequency, polarized chromosomal transfer mediated by plasmid pSJ15 in strain 162 appeared to depend on plasmid integration through the homologous dVcA1 sequences in both replicons. When strain 162(pSJ15) donors were mated to the nonlysogenic El Tor strain RJ1, many potential ampicillin-resistant transconjugants were zygotically induced. However, surviving transconjugants (i) were immune to phage VcA1, (ii) cotransferred immunity and ampicillin resistance to nonlysogenic recipients, and (iii) did not preferentially transfer any chromosomal markers. Recombinant plasmids that transferred wild-type VcA1 prophages were readily isolated from strain RJ1 (VcA1+) lysogens that contained plasmid pSJ15. Physical measurements revealed that plasmid pSJ15 and the recombinant plasmids were about one VcA1 genome (22 to 24 megadaltons) larger than the 51-megadalton pSJ5 plasmid. Similar Hfr-like donors were constructed by introducing plasmid pSJ15 into different strain RJ1 (VcA1+) lysogens. Transfer properties of these donors indicated that the VcA1 prophage was integrated at several sites in the strain RJ1 chromosome.  相似文献   

17.
The three factor crosses between the donor strain Bacillus subtilis 168 harbouring the plasmid pUB102-4, Bacillus thuringiensis strain carrying the mobilizing plasmid pAM beta 1 and recipient strain Lactobacillus fermenti were conducted in order to elaborate the optimal conditions of the plasmid pUB102-4 mobilization for transfer into gram-positive microorganisms and to elucidate the possible expression of endogluconase genes in a lactobacillus strain. The Lactobacillus fermenti transconjugants carrying the pUB102-4 plasmid were obtained in the three factor reciprocal crosses with the streptococcus recipient strain and Bacillus subtilis recipients. The presence of the plasmids in transconjugants was confirmed by colony hybridization with the [32P]-labelled plasmid DNA and KMC-ase activity in transconjugant cells. The proposed system of crosses using the high copy number plasmid derivatives of pUB110 mobilized with high frequency by the pAM beta 1 plasmid demonstrates the possibility to increase the circle of gram-positive host bacteria avoiding time and labour consuming operations.  相似文献   

18.
A nodulation plasmid, pRtr-514a, of molecular size 180 megadaltons (Mdal) was identified in Rhizobium trifolii strain NZP514. This plasmid was absent in both spontaneous and heat-cured Nod- derivatives of NZP514, and these strains were unable to induce root hair curling. The ability to nodulate clover was transferred from the wild-type strain to a Nod- derivatives, PN104, with the broad-host-range plasmid R68.45 (39 megadaltons) at a cotransfer frequency of about 4 X 10(-3). Most of the Nod+ transconjugants were resistant to kanamycin, tetracycline, and carbenicillin and had received a plasmid approximately 36 or 70 Mdal larger than pRtr514a but did not contain a plasmid of the size of R68.45, indicating that pRtr-514a was mobilized as a cointegrate plasmid containing either one or possibly two copies of R68.45. Use of these cointegrate-containing strains as donors in further crosses with the Nod- derivative strain PN118 resulted in high-frequency transfer of Nod+ (10(-3) to 10(-4), with cotransfer frequencies with kanamycin of up to 100%. Introduction of R68.45 into a derivative of NZP514 containing the broad-host-range plasmid pJP4 (52 Mdal) resulted in a high frequency of transconjugants carrying a cointegrate plasmid composed of pRtr-514a and pJP4. When used as donors to Nod- derivatives, such strains cotransferred Nod+ with kanamycin plus mercury at a frequency of 67%. The identification of stable cointegrates between pRtr-514a and the broad-host-range plasmids R68.45 and pJP4 should enable several genetic manipulations to be carried out with this nodulation plasmid, including the transfer of the plasmid to most gram-negative bacterial genera.  相似文献   

19.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

20.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号