首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P C Kline  V L Schramm 《Biochemistry》1992,31(26):5964-5973
Purine nucleoside phosphorylase from calf spleen is a trimer which catalyzes the hydrolysis of inosine to hypoxanthine and ribose in the absence of inorganic phosphate. The reaction occurs with a turnover number of 1.3 x 10(-4) s-1 per catalytic site. Hydrolysis of enzyme-bound inosine occurs at a rate of 2.0 x 10(-3) s-1 to form a stable enzyme-hypoxanthine complex and free ribose. The enzyme hydrolyzes guanosine; however, a tightly-bound guanine complex could not be isolated. The complex with hypoxanthine is stable to gel filtration but can be dissociated by acid, base, or mild denaturing agents. Following gel filtration, the E.hypoxanthine complex dissociates at a rate of 1.9 x 10(-6) s-1 at 4 degrees C and 1.3 x 10(-4) s-1 at 30 degrees C. The dissociation constant for the tightly-bound complex of enzyme-hypoxanthine is estimated to be 1.3 x 10(-12) M at 30 degrees C on the basis of the dissociation rate. The stoichiometry of the reaction is 1 mol of hypoxanthine bound per trimer. The reaction is reversible since the same complex can be formed from enzyme and hypoxanthine. Addition of ribose 1-phosphate to the complex results in the formation of inosine without release of hypoxanthine. Thus, the complex is catalytically competent. Inorganic phosphate or arsenate prevents formation of the tightly-bound E.hypoxanthine complex from inosine or hypoxanthine. Direct binding studies with hypoxanthine in the presence of phosphate result in 3 mol of hypoxanthine bound per trimer with a dissociation constant of 1.6 microM. In the absence of phosphate, three hypoxanthines are bound, but higher hypoxanthine concentrations cause the release of two of the hypoxanthines with an apparent inhibition constant of 130 microM. The results establish that enzymatic contacts with the nucleoside alone are sufficient to destabilize the N-glycosidic bond. In the absence of phosphate, water attacks slowly, causing net hydrolysis. The hydrolytic reaction leaves hypoxanthine stranded at the catalytic site, tightly bound to the enzyme with a conformation related to the transition state. In the phosphorolysis reaction, ribose 1-phosphate causes relaxation of this conformation and rapid release of hypoxanthine.  相似文献   

2.
Superoxide dismutase (superoxide: superoxide oxidoreductase, EC 1.15.1.1) (SOD) and ferricytochrome c are used to check the effects on luminol chemiluminescence induced by a xanthine or hypoxanthine/xanthine oxidase/oxygen system. Luminol chemiluminescence has been attributed to superoxide anion radical (O2.-) in this system. From kinetic studies on the light intensity vs. time curves it is demonstrated that addition of SOD into the system does not affect the mechanism of O2.- generation, whilst ferricytochrome c dramatically alters the time-course of the reaction. This is interpreted as the effect of cytochrome c redox cycling by reaction with H2O2, modifying oxy-radical generation in the reaction medium. Also, an alternative mechanism for luminol chemiexcitation is proposed under certain experimental conditions.  相似文献   

3.
Uric acid seems to act as an electronic acceptor in the dehydrogenation of hypoxanthine catalyzed by chicken liver's xanthinedehydrogenase (XDH). Oxidation was observed in crude homogenates under anaerobic conditions, although dialyzed homogenates or purified hepatic XDH also induce a similar action either in aerobic or anaerobic conditions. The reaction pH optimum is about 6.0. Xanthine appears to be the only inhibited product of the reaction when its concentration is greater than 1 X 10(-4) M. When hypoxanthine and uric acid concentrations exceed 2 X 10(-3) M and 1 X 10(-4) M, respectively, they induce inhibition by substrate. Purine is a fairly good substrate of XDH when uric acid acts as acceptor. Allopurinol inhibits hypoxanthine oxidation by uric acid in the presence of XDH. XDH also catalyzes the dismutation of xanthine to hypoxanthine and uric acid.  相似文献   

4.
Hypoxanthine-guanine phosphoribosyltransferase from a young man with purine overproduction and decreased purine salvage in fibroblast cultures was found to have low activity at concentrations of purine substrates at which the enzyme from normal individuals showed near maximal activity. The low enzyme activity was not associated with changes in the values of the Km(app) and Vmax(app) for any of the enzyme substrates. However, the enzyme activity was susceptible to substrate inhibition by hypoxanthine and guanine. The values obtained for the true Km, true Vmax, and true Ki for hypoxanthine were 26 +/- 10 microM, 1761 +/- 382 microunits/mg of protein, and 80 +/- 20 microM, respectively. The pattern of the substrate inhibition, as seen on a plot of 1/v versus hypoxanthine concentration, was characteristic of that associated with the formation of a dead-end complex between the inhibitory substrate and an enzyme form with which it normally does not react. The nature of this enzyme form and that of the dead-end complex was determined from double inhibition experiments, which indicated that hypoxanthine interacted with an enzyme-PPi intermediate to form an enzyme-hypoxanthine-PPi dead-end complex. The trapping of the enzyme in this inactive form explains the low activity at high purine base concentrations. Further information as to the nature of the reaction mechanism was obtained from plots of the reciprocal of enzyme activity versus the reciprocal of PP-ribose-P concentration at different fixed hypoxanthine concentrations. A pattern characteristic of uncompetitive substrate inhibition was obtained. This is indicative of an ordered sequential binding of substrates on the enzyme; PP-ribose-P binding before hypoxanthine. Thus, the variant enzyme showed an ordered sequential reaction mechanism, with the inhibitory substrate forming a dead-end complex with an enzyme-PPi intermediate.  相似文献   

5.
1. Kinetic properties of xanthine:NAD+ oxidoreductase from liver of two uricotelic species of vertebrates (hen Gallus gallus and snake Natrix natrix) are compared. 2. Hen enzyme is saturated by hypoxanthine and xanthine at higher concentrations than the snake enzyme. For both species the enzyme-saturating concentration and hydroxylation rate of hypoxanthine are higher than those of xanthine, and the rate of uric acid production in the hypoxanthine----xanthine----uric acid reaction sequence is independent of the initial hypoxanthine concentration. 3. Km's for xanthine are the same, but Km for NAD+ of the hen enzyme is approximately 5-fold lower. The enzyme from both species is inhibited by NADH only slightly and at high non-physiological concentrations.  相似文献   

6.
Mao L  Xu F  Xu Q  Jin L 《Analytical biochemistry》2001,292(1):94-101
Fabrication and characterization of miniaturized amperometric hypoxanthine biosensors are described and demonstrated for monitoring hypoxanthine in myocardial cell culture media. The sensors are based on xanthine oxidase (XO) immobilized on carbon fiber microelectrodes (CFMEs) using a composite film of Nafion and electropolymerized phenol (PPh). Nafion was used for XO immobilization because of its film hydrophobicity, enzyme-favored environment, and electrostatic interaction with XO, which was dispersed in Nafion film by immersing the Nafion-coated CFMEs in XO solution for 5 h. PPh film was formed as an overlay on Nafion and XO-modified CFMEs via electropolymerization. Hypoxanthine was measured with the sensor by the oxidation of enzymatic reaction products, hydrogen peroxide (H(2)O(2)), and uric acid (UA) at +0.60 V (vs Ag/AgCl). The use of Nafion and PPh as a matrix for XO immobilization yields enhanced specificity, sensitivity, and linearity toward hypoxanthine. A dynamic linear range of 5.0 microM to 1.8 mM was achieved with a calculated detection limit of 1.5 microM (S/N = 3) and a sensitivity of 3.144 nA/mM. In addition, the measurement was virtually interference-free from easily oxidizable species such as UA, ascorbic acid, physiological levels of neurotransmitters, and their principal metabolites. The biosensor was used to monitor hypoxanthine accumulation in myocardial cell culture media, in which the level of extracellular hypoxanthine was found to increase with ischemic tolerance.  相似文献   

7.
In the microbial conversion of added hypoxanthine to 5'-inosinic acid, Mn(2+) concentration in the growth medium is known to have a profound effect both on the yield of 5'-inosinic acid and the morphology of cells of Brevibacterium ammoniagenes. To elucidate the mechanism in which Mn(2+) was concerned with cell morphology and 5'-inosinic acid production, effects of Mn(2+) on the macromolecular synthesis were measured. It was found that Mn(2+) strongly governed deoxyribonucleic acid (DNA) synthesis and that, in the medium lacking Mn(2+), DNA synthesis was stopped at the level corresponding to one-fourth to one-third that in the medium supplemented with Mn(2+) (100 mug/liter). On the other hand, cellular ribonucleic acid and protein synthesis was quite indifferent to Mn(2+) concentration. Consequently, cells showed so-called "unbalanced growth death" after 10 hr of culture, losing the ability to form colonies while cell mass was increasing. The elongated cells turned into irregular forms (bulbous, club-shaped, etc.) which finally lysed. Two main reaction components in the conversion of hypoxanthine to 5'-inosinic acid, phosphoribosylpyrophosphate and hypoxanthine phosphoribosyltransferase, were liberated into the medium during lysis. The role of Mn(2+) in the synthesis of DNA and the role of the unbalanced growth death in the conversion of hypoxanthine to 5'-inosinic acid are discussed.  相似文献   

8.
1. 5-Phosphoribosyl 1-methylenediphosphonate was isolated after reaction of ribose 5-phosphate and O-adenylyl methylenediphosphonate with 5-phosphoribosyl pyrophosphate synthetase from Ehrlich ascites-tumour cells. 2. The analogue reacted with adenine phosphoribosyltransferase, hypoxanthine phosphoribosyltransferase and nicotinamide phosphoribosyltransferase [K(m) (analogue)/K(m) (5-phosphoribosyl pyrophosphate) 0.17, 0.19 and 6.3 respectively; V(max.) (analogue)/V(max.) (5-phosphoribosyl pyrophosphate) 0.011, 0.26 and 1.1 respectively]. 3. The analogue was not a substrate for 5-phosphoribosyl pyrophosphate amidotransferase or orotate phosphoribosyltransferase. 4. Ribose 5-phosphorothioate was synthesized by allowing ribose to react with thiophosphoryl chloride in triethyl phosphate. The analogue was a substrate for 5-phosphoribosyl pyrophosphate synthetase from Ehrlich ascites-tumour cells. When this reaction was coupled to either adenine phosphoribosyltransferase or hypoxanthine phosphoribosyltransferase, adenosine 5'-phosphorothioate or inosine 5'-phosphorothioate was formed respectively.  相似文献   

9.
1. Esterification of radiolabelled cholesterol in the plasma of rat, mouse, pig, ox and, to a lesser extent, guinea pig was partially inhibited by hypoxanthine, xanthine and guanine; esterification in human plasma and in plasma from 12 other vertebrate species was unaffected by purines. 2. Esterification of endogenous cholesterol and the formation of lysolecithin in rat plasma were decreased in the presence of purines indicating that it was the lecithin:cholesterol acyltransferase (LCAT) reaction that was inhibited rather than the isotopic equilibration of labelled cholesterol with the endogenous substrate lipoproteins. 3. Maximum inhibition of the LCAT reaction in rat plasma occurred at 1.4 mM hypoxanthine or xanthine; inhibition was not dependent upon the concentration of LCAT or plasma lipoproteins but increased with the amount of lipoprotein depleted rat plasma (LDRP) present in the incubation mixture. 4. Partial inhibition of the LCAT reaction in rat or mouse plasma by purines had no significant effect on the fatty acyl composition of the cholesteryl esters (CE) formed by LCAT. 5. In the presence of heated rat plasma, LDRP or, to a lesser extent, rat high density lipoproteins (HDL) prepared from heated plasma, the LCAT reaction in human plasma was inhibited by hypoxanthine. 6. Rat HDL and LDRP prepared from plasma pre-incubated at 37 degrees C for 4 hr before heating increased and decreased, respectively, the inhibitory effect of hypoxanthine on human plasma LCAT compared with HDL and LDRP prepared from unincubated rat plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Kita M  Imai H 《Theriogenology》1993,40(2):357-364
The activity of hypoxanthine phosphoribosyltransferase (HPRT) was determined in the bovine embryo during early embryonic development. Microassay, using [(3)H] hypoxanthine, was improved to measure enzyme activity in the embryonic extract. This activity depended on the reaction time and the concentration of phosphorybosyl pyrophosphate (PRPP) in a reaction. mixture. Maximum activity was obtained at 4 hours of reaction time and at a concentration of 1 mM PRPP, but was much lower than the activity recorded in the mouse embryo. During early embryonic development, HPRT activity rapidly increased beyond the 8-cell stage. When distributions and activities of HPRT, adenine phosphorybosyltransferase (APRT), and the ratio of HPRT: APRT were examined in individual blastocysts, HPRT activity was broadly distributed, but it did not clearly show the bimodal distribution expected. Six of demi-embryos with high or low HPRT:APRT ratios were transferred to recipient cows from which 2 calves were obtained. Both offspring were of the sex predicted by the HPRT: APRT ratio. These results indicate that HPRT activity of bovine preimplantation embryos can be microassayed using radiolabeled hypoxanthine, and this assay could provide an alternative method for embryo sexing.  相似文献   

11.
2-(6-Chloropurinyl)-3-benzoyloxymethylcyclobutanone can be prepared by reaction of 6-chloropurine with 3-benzoyloxymethyl-2-bromocyclobutanone. The N-alkylation gave both N-9 and N-7 regioisomers. Both regioisomers upon hydride reduction followed by aminolysis gave the corresponding adenine nucleoside analogues. However, the N-7 series led to the hypoxanthine analogues as byproducts.  相似文献   

12.
Impairment of lysosomal stability due to reactive oxygen species generated during the oxidation of hypoxanthine by xanthine oxidase was studied in rat liver lysosomes isolated in a discontinuous Nycodenz gradient. Production of O2.- and H2O2 during the hypoxanthine/xanthine oxidase reaction occurred for at least 5 min, while lysosomal damage, indicated by the release of N-acetyl-beta-glucosaminidase, occurred within 30 s, there being no further damage to these organelles thereafter. The extent of lysosomal enzyme release increased with increasing xanthine oxidase concentration. Superoxide dismutase and catalase did not prevent lysosomal damage during the hypoxanthine/xanthine oxidase reaction. Lysosomes reduced xanthine oxidase activity, as assessed in terms of O2 consumption, only slightly but substantially inhibited in a competitive manner the O2.- -mediated reduction of cytochrome c. This inhibition was almost completely reversed by potassium cyanide, thus pointing to the presence of a cyanide-sensitive superoxide dismutase in the lysosomal fraction. However, potassium cyanide did not affect the hypoxanthine/xanthine oxidase-mediated lysosomal damage, thus suggesting an inability of the lysosomal superoxide dismutase to protect the organelles. Negligible malondialdehyde formation was observed in the lysosomes either during the hypoxanthine/xanthine oxidase reaction or with different selective experimental approaches known to produce lipid peroxidation in other organelles such as microsomes and mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. A patient with congenital deficiency of xanthine oxidase (EC 1.2.3.2) (xanthinuria) excreted the xanthine isomer 4,6-dihydroxypyrazolo[3,4-d]pyrimidine (oxipurinol) in his urine when the hypoxanthine isomer 4-hydroxypyrazolo[3,4-d]pyrimidine (allopurinol) was given by mouth. 2. The identity of the oxipurinol that the patient excreted was established by mass spectrometry. 3. The mass spectra and infrared spectra of allopurinol, oxipurinol, hypoxanthine and xanthine are compared. 4. A mechanism for the fragmentation of these compounds that occurs during their mass-spectrometric investigation is proposed. 5. A possible metabolic pathway for the oxidation of allopurinol to oxipurinol in the absence of xanthine oxidase is discussed.  相似文献   

14.
[2-3H]Inosinic acid ([2-3H]IMP) has been biosynthesized in good yield from [2-3H]hypoxanthine and PRPP via the action of a partially purified preparation of hypoxanthine/guanine phosphoribosyl transferase from mouse brain. The product was purified in one step by ascending paper chromatography, and used to assess the activity of IMP dehydrogenase. To conduct the assay, tritiated substrate is admixed with enzyme in a final volume of 10 microliters; NAD is present to serve as cofactor for the reaction, and allopurinol to inhibit the oxidation of any hypoxanthine generated as a consequence of side reactions. After an appropriate period of incubation, the 3H2O arising from the oxidation of tritiated IMP via [3H]NAD is isolated by quantitative microdistillation. Performed as described, the assay is facile, sensitive, and accurate, with the capability of detecting the dehydrogenation of as little as 1 pmol of [3H]IMP. Using it, measurements have been made of IMP dehydrogenase in a comprehensive array of mouse organs. Of these, pancreas contained the enzyme at the highest specific activity.  相似文献   

15.
Soybean nodule xanthine dehydrogenase: a kinetic study   总被引:1,自引:0,他引:1  
Xanthine dehydrogenase was purified from soybean nodules and the kinetic properties were studied at pH 7.5. Km values of 5.0 +/- 0.6 and 12.5 +/- 2.5 microM were obtained for xanthine and NAD+, respectively. The pattern of substrate dependence suggested a Ping-Pong mechanism. Reaction with hypoxanthine gave Km's of 52 +/- 3 and 20 +/- 2.5 microM for hypoxanthine and NAD+, respectively. The Vmax for this reaction was twice that for the xanthine-dependent reaction. The pH dependence of Vmax gave a pKa of 7.6 +/- 0.1 for either xanthine or hypoxanthine oxidation. In addition the Km for xanthine had a pKa of 7.5 consistent with the protonated form of xanthine being the true substrate. Km for hypoxanthine varied only 2.5-fold between pH 6 and 10.7. Product inhibition studies were carried out with urate and NADH. Both products gave mixed inhibition with respect to both substrates. Xanthine dehydrogenase was able to use APAD+ as an electron acceptor for xanthine oxidation, with a Km at pH 7.5 of 21.2 +/- 2.5 microM and Vmax the same as that obtained with NAD+. Reduction of APAD+ by NADH was also catalyzed by xanthine dehydrogenase with a Km of 102 +/- 15 microM; Vmax was approximately 2.5 times that for the xanthine-dependent reaction, and was independent of pH between 6 and 9. Reaction with group-specific reagents indicated the possibility of an essential histidyl group. A thiol-modifying reagent did not cause inactivation of the enzyme. A role for the histidyl side chain in catalysis is proposed.  相似文献   

16.
1. Xanthine:NAD+ oxidoreductase from chick embryo liver is unconvertible to the O2-dependent form, as is the enzyme from the adult hen. The Km for NAD+ (approximately 3 microM) of the embryonic enzyme is equal to, and the Km for xanthine (approximately 5 microM) is 2.5-fold lower, when compared with respective Km values of the "adult" hen enzyme. The inhibition of embryonic enzyme by NADH begins at 10 microM NADH and attains 13% at 35 microM NADH (respective data for the "adult" enzyme: 50 microM and 20% at 80 microM NADH). 2. The course of hypoxanthine----xanthine----uric acid hydroxylation catalyzed by the embryonic and "adult" enzymes is similar, however the rate of the first reaction is 2-fold lower for the embryonic enzyme. Under conditions of the limited nutritional system in the developing chick embryo, the low rate of hypoxanthine hydroxylation may promote reutilization of hypoxanthine for nucleotide synthesis.  相似文献   

17.
Both enzyme-mediated group translocation and facilitated diffusion have been proposed as mechanisms by which mammalian cells take up purine bases and nucleosides. We have investigated the mechanisms for hypoxanthine and inosine transport by using membrane vesicles from Chinese hamster ovary cells (CHO), Balb/c 3T3 and SV3T3 cells prepared by identical procedures. Uptake mechanisms were characterized by analyzing intravesicular contents, determining which substrates could exchange with the transport products, assaying for hypoxanthine phosphoribosyltransferase activity, and measuring the stimulation of uptake of hypoxanthine by phosphoribosyl pyrophosphate (PRib-PP).We found that the uptake of hypoxanthine in Balb 3T3 vesicles was stimulated 3–4-fold by PRib-PP. The intravesicular product was predominantly IMP. The hypoxanthine phosphoribosyltransferase activity copurified with the vesicle preparation. These results suggest the possible involvement of this enzyme in hypoxanthine uptake in 3T3 vesicles. In contrast to the 3T3 vesicles, CHO vesicles prepared under identical procedures did not retain hypoxanthine phosphoribosyltransferase activity and did not demonstrate PRib-PP-stimulated hypoxanthine uptake. The intravesicular product of hypoxanthine uptake in CHO vesicles was hypoxanthine. These results and data from our kinetic and exchange studies indicated that CHO vesicles transport hypoxanthine via facilitated diffusion. An analogous situation was observed for inosine uptake; CHO vesicles accumulated inosine via a facilitated diffusion mechanism, while in the same experiments SV3T3 vesicles exhibited a purine nucleoside phosphorylase-dependent translocation of the ribose moiety of inosine.  相似文献   

18.
The mechanism of purine arabinoside synthesis from uracil arabinoside and purine bases via the bacterial transarabinosylation reaction was investigated. Arabinose-1-phosphate was isolated from the reaction mixture in the form of the barium salt and proved to be the intermediate of the reaction. Two enzyme fractions were obtained from Enterobacter aerogenes by means of heat treatment, ammonium sulfate fractionation and DEAE-cellulose column chromatography. One enzyme split uracil arabinoside into uracil and arabinose-1-phosphate in the presence of inorganic phosphate and the other synthesized hypoxanthine arabinoside from arabinose-1-phosphate and hypoxanthine. The substrate specificity of these enzymes indicated that the former was uridine phosphorylase and the latter was purine nucleoside phosphorylase, respectively. Hypoxanthine arabinoside was synthesized from uracil arabinoside and hypoxanthine only in the presence of both enzymes and inorganic phosphate.  相似文献   

19.
Column chromatography with Biogel P2 (molecular exclusion of 1800 daltons) indicates that the transforming principle causing microstomes to become macrostomes is a small molecule. Absorbance tests show that only those fractions with high absorbance at 260 nm have biological activity, indicating that the active principle is a component of nucleic acids. Tests of purines and pyrimidines show that purines are active, with hypoxanthine having the highest activity. The combination of hypoxanthine with uridine shows a synergistic reaction. As these two compounds are the natural catabolic excretory products from nucleic acids in Tetrahymena, the fact that they induce transformation in concentrated, starving cells may be a survival mechanism allowing cannibalism to be induced when nutrients are depleted, thereby allowing the survival of the transformed cells until such time as adequate nutritional conditions are restored.  相似文献   

20.
The concentrations of hypoxanthine and adenosine in ovarian follicular fluid were estimated, using high-performance liquid chromatography, for three groups of mice: 1) pregnant mare's serum gonadotropin (PMSG)-primed mice; 2) PMSG-primed mice 2 h after injection with human chorionic gonadotropin (hCG); and 3) PMSG-primed mice 5 h after injection with hCG. The concentration of hypoxanthine in follicular fluid of Group 1 mice was 2-4 mM and of adenosine was 0.35-0.70 mM. There was no difference in the concentrations of these purines in the follicular fluid of Group 2 mice, in which maturation had been induced with hCG but the samples were taken just before germinal vesicle breakdown (GVBD). Therefore, a decrease in the concentrations of these purines does not appear to induce GVBD. A significant decrease in the concentrations of hypoxanthine and adenosine was observed in the follicular fluid of Group 3 mice in which GVBD had already occurred. This decrease was probably a result of an increase in follicular fluid volume. Adenosine had a significant, but transient, effect in maintaining both cumulus cell-enclosed and denuded oocytes in meiotic arrest; all oocytes had undergone GVBD by 100 min incubation in 1 mM adenosine. When GVBD was assessed after 3 h culture, concentrations up to 5 mM adenosine failed to maintain meiotic arrest. In contrast, hypoxanthine (2-5 mM) had a dose-dependent effect in maintaining both cumulus cell-enclosed and denuded oocytes in meiotic arrest that was sustained up to 24 h. Cumulus cell-enclosed oocytes were always more sensitive to hypoxanthine than were denuded oocytes. There was a strong synergistic effect of adenosine and hypoxanthine in maintaining meiotic arrest; 4 mM hypoxanthine and 0.75 mM adenosine maintained more than 95% of the oocytes in meiotic arrest for culture periods up to 24 h. This action was completely reversible by withdrawal of the purines. It is hypothesized that the synergistic effect of these purines may result both by promoting cyclic adenosine monophosphate synthesis (adenosine), and by preventing its hydrolysis (hypoxanthine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号