首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The cyclin dependent kinase (cdk) inhibitor NU6027, 4-cyclohexylmethoxy-5-nitroso-pyrimidine-2,6-diamine (IC(50) vs cdk1/cyclinB1=2.9+/-0.1 microM and IC(50) vs cdk2/cyclinA3=2.2+/-0.6 microM), was used as the basis for the design of a series of 4-alkoxy-2,6-diamino-5-nitrosopyrimidine derivatives. The synthesis and evaluation of 21 compounds as potential inhibitors of cyclin-dependent kinases 1 and 2 is described and the structure-activity relationships relating to NU6027 have been probed. Simple alkoxy- or cycloalkoxy-groups at the O(4)-position were tolerated, with the 4-(2-methylbutoxy)-derivative (IC(50) vs cdk1/cyclinB1=12+/-2 microM and cdk2/cyclinA3=13+/-4 microM) retaining significant activity. Substitutions at the N(6) position were not tolerated. Replacement of the 5-nitroso substituent with ketone, oxime and semicarbazone groups essentially abolished activity. However, the derivative bearing an isosteric 5-formyl group, 2,6-diamino-4-cyclohexylmethoxy-pyrimidine-5-carbaldehyde, showed modest activity (IC(50) vs cdk1/cyclinB1=35+/-3 microM and cdk2/cyclinA3=43+/-3 microM). The X-ray crystal structure of the 5-formyl compound bound to cdk2 has been determined to 2.3A resolution. The intramolecular H-bond deduced from the structure with NU6027 bound to cdk2 is not evident in the structure with the corresponding formyl compound. Thus the parent compound, 4-cyclohexylmethoxy-5-nitrosopyrimidine-2,6-diamine (NU6027), remains the optimal basis for future structure-activity studies for cyclin-dependent kinase inhibitors in this series.  相似文献   

2.
The effects of the enantiomers of a number of flexible and cis-constrained GABA analogues were tested on GABA(C) receptors expressed in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. (1S,2R)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((+)-CAMP), a potent and full agonist at the rho1 (EC(50) approximately 40 microM, I(max) approximately 100%) and rho 2 (EC(50) approximately 17 microM, I(max) approximately 100%) receptor subtypes, was found to be a potent partial agonist at rho3 (EC(50) approximately 28 microM, I(max) approximately 70%). (1R,2S)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((-)-CAMP), a weak antagonist at human rho1 (IC(50) approximately 890 microM) and rho2 (IC(50) approximately 400 microM) receptor subtypes, was also found to be a moderately potent antagonist at rat rho3 (IC(50) approximately 180 microM). Similarly, (1R,4S)-4-aminocyclopent-2-ene-1-carboxylic acid ((+)-ACPECA) was a full agonist at rho1 (EC(50) approximately 135 microM, I(max) approximately 100%) and rho2 (EC(50) approximately 60 microM, I(max) approximately 100%), but only a partial agonist at rho3 (EC(50) approximately 112 microM, I(max) approximately 37%), while (1S,4R)-4-aminocyclopent-2-ene-1-carboxylic acid ((-)-ACPECA) was a weak antagonist at all three receptor subtypes (IC(50)>300 microM). 4-Amino-(S)-2-methylbutanoic acid ((S)-2MeGABA) and 4-amino-(R)-2-methylbutanoic acid ((R)-2MeGABA) followed the same trend, with (S)-2MeGABA acting as a full agonist at the rho1 (EC(50) approximately 65 microM, I(max) approximately 100%), and rho2 (EC(50) approximately 20 microM, I(max) approximately 100%) receptor subtypes, and a partial agonist at rho3 (EC(50) approximately 25 microM, I(max) approximately 90%). (R)-2MeGABA, however, was a moderately potent antagonist at all three receptor subtypes (IC(50) approximately 16 microM at rho1, 125 microM at rho2 and 35 microM at rho3). On the basis of these expanded biological activity data and the solution-phase molecular structures obtained at the MP2/6-31+G* level of ab initio theory, a rationale is proposed for the genesis of this stereoselectivity effect.  相似文献   

3.
In order to identify new subtype-selective (S)-glutamate (Glu) receptor ligands we have synthesized (RS)-2-amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl)propionic acid [(RS)-TDPA]. Resolution of (RS)-TDPA by chiral chromatography was performed using a Crownpac CR(+) column affording (R)- and (S)-TDPA of high enantiomeric purity (enantiomeric excess=99.9%). An X-ray crystallographic analysis revealed that the early eluting enantiomer has R-configuration. Both enantiomers showed high affinity as well as high agonist activity at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, determined using a [(3)H]AMPA binding assay and an electrophysiological model, respectively. The affinities and agonist activities obtained for (R)-TDPA (IC(50)=0.265 microM and EC(50)=6.6 microM, respectively) and (S)-TDPA (IC(50)=0.065 microM and EC(50)=20 microM, respectively) revealed a remarkably low AMPA receptor stereoselectivity, (S)-TDPA showing the highest affinity and (R)-TDPA the most potent agonist activity. In addition, (S)-TDPA was shown to interact with synaptosomal Glu uptake sites displacing [(3)H](R)-aspartic acid (IC(50 ) approximately 390 microM). An enantiospecific and subtype-selective agonist activity was observed for (S)-TDPA at group I metabotropic Glu (mGlu) receptors (EC(50)=13 microM at mGlu(5) and EC(50)=95 microM at mGlu(1)).  相似文献   

4.
To generate new scaffold candidates as highly selective and potent cyclin-dependent kinase (CDK) inhibitors, structure-based drug screening was performed utilizing 3D pharmacophore conformations of known potent inhibitors. As a result, CR229 (6-bromo-2,3,4,9-tetrahydro-carbolin-1-one) was generated as the hit-compound. A computational docking study using the X-ray crystallographic structure of CDK2 in complex with CR229 was evaluated. This predicted binding mode study of CR229 with CDK2 demonstrated that CR229 interacted effectively with the Leu83 and Glu81 residues in the ATP-binding pocket of CDK2 for the possible hydrogen bond formation. Furthermore, biochemical studies on inhibitory effects of CR229 on various kinases in the human cervical cancer HeLa cells demonstrated that CR229 was a potent inhibitor of CDK2 (IC50: 3 microM), CDK1 (IC50: 4.9 microM), and CDK4 (IC50: 3 microM), yet had much less inhibitory effect (IC50: >20 microM) on other kinases, such as casein kinase 2-1 (CK2- alpha1), protein kinase A (PKA), and protein kinase C (PKC). Accordingly, these data demonstrate that CR229 is a potent CDK inhibitor with anticancer efficacy.  相似文献   

5.
The phosphono amino acid, (RS)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl+ ++]propio nic acid (ATPO), is a structural hybrid between the NMDA antagonist (RS)-2-amino-7-phosphonoheptanoic acid (AP7) and the AMPA and GluR5 agonist, (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA). ATPO has been resolved into (S)-ATPO and (R)-ATPO using chiral HPLC, and the absolute stereochemistry of the two enantiomers was established by an X-ray crystallographic analysis of (R)-ATPO. (S)-ATPO and (R)-ATPO were characterized pharmacologically using rat brain membrane binding and electrophysiologically using the cortical wedge preparation as well as homo- or heteromeric GluR1-4, GluR5-6, and KA2 receptors expressed in Xenopus oocytes. (R)-ATPO was essentially inactive as an agonist or antagonist in all test systems. (S)-ATPO was an inhibitor of the binding of [(3)H]AMPA (IC(50) = 16 +/- 1 microM) and of [(3)H]-6-cyano-7-nitroquinoxaline-2,3-dione ([(3)H]CNQX) (IC(50) = 1.8 +/- 0.2 microM), but was inactive in the [(3)H]kainic acid and the [(3)H]-(RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([(3)H]CPP) binding assays. (S)-ATPO did not show detectable agonist effects at any of the receptors under study, but antagonized AMPA-induced depolarization in the cortical wedge preparation (IC(50) = 15 +/- 1 microM). (S)-ATPO also blocked kainic acid agonist effects at GluR1 (K(i) = 2.0 microM), GluR1+2 (K(i) = 3.6 microM), GluR3 (K(i) = 3.6 microM), GluR4 (K(i) = 6.7 microM), and GluR5 (K(i) = 23 microM), but was inactive at GluR6 and GluR6+KA2. Thus, although ATPO is a structural analog of AP7 neither (S)-ATPO nor (R)-ATPO are recognized by NMDA receptor sites.  相似文献   

6.
2,6-Dideoxy-7-O-(beta-D-glucopyranosyl) 2,6-imino-D-glycero-L-gulo- heptitol (7-O-beta-D-glucopyranosyl-alpha-homonojirimycin, 1) was isolated from the 50% methanol extract of the whole plant of Lobelia sessilifolia (Campanulaceae), which was found to potently inhibit rice alpha-glucosidase. Adenophorae radix, roots of Adenophora spp. (Campanulaceae), yielded new homonojirimycin derivatives, adenophorine (2), 1-deoxyadenophorine (3), 5-deoxyadenophorine (4), 1-C-(5-amino-5-deoxy-beta-D-galactopyranosyl)butane (beta-1-C-butyl-deoxygalactonojirimycin, 5), and the 1-O-beta-D-glucosides of 2 (6) and 4 (7), in addition to the recently discovered alpha-1-C-ethylfagomine (8) and the known 1-deoxymannojirimycin (9) and 2R,5R-bis(hydroxymethyl)-3R,4R- dihydroxypyrrolidine (DMDP, 10). Compound 4 is a potent inhibitor of coffee bean alpha-galactosidase (IC50 = 6.4 microM) and a reasonably good inhibitor of bovine liver beta-galactosidase (IC50 = 34 microM). Compound 5 is a very specific and potent inhibitor of coffee bean alpha-galactosidase (IC50 = 0.71 microM). The glucosides 1 and 7 were potent inhibitors of various alpha-glucosidases, with IC50 values ranging from 1 to 0.1 microM. Furthermore, 1 potently inhibited porcine kidney trehalase (IC50 = 0.013 microM) but failed to inhibit alpha-galactosidase, whereas 7 was a potent inhibitor of alpha-galactosidase (IC50 = 1.7 microM) without trehalase inhibitory activity.  相似文献   

7.
Two stereoisomers of a castasterone/ponasterone A hybrid compound, the (20R,22R) and (20R,22S)-isomers of 2alpha,3alpha,20,22-tetrahydroxy-5alpha-cholestan-6-one, were synthesized stereoselectively and their binding activity to the ecdysteroid receptor was determined. From the concentration-response curve for the inhibition of the incorporation of tritiated ponasterone A into ecdysteroid receptor containing insect cells, the concentration (IC50) required to inhibit 50% of the incorporation of radioactivity into cells was evaluated. The IC50 values of the (22R)- and (22S)-isomers were determined to be 0.30 and 38.9 microM against Kc cells, respectively, indicating that the (22R)-isomer is about 100 times more potent than the corresponding (22S)-isomer. IC50 values of these compounds against lepidopteran Sf-9 cells were determined to be 0.36 and 12.9 microM, respectively. The molting hormonal effect was examined in a Chilo suppressalis integument system and the 50% effective concentration for the stimulation of N-acetylglucosamine incorporation into the cultured integument was determined to be 2.7 microM for the (22R)-isomer, while the (22S)-isomer was inactive. On the other hand, both isomers did not show brassinolide-like activity in the rice lamina inclination assay.  相似文献   

8.
Based on the X-ray crystallography of our lead compound 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-cyanopyrazin-2-yl)urea in the checkpoint kinase 1 (Chk1) enzyme, we modified R4, and to a lesser extent, R2, and R5 of the phenyl ring, and made a variety of N-aryl-N'-pyrazinylurea Chk1 inhibitors. Enzymatic activity less than 20 nM was observed in 15 of 41 compounds. Compound 8i provided the best overall results in the cellular assays as it abrogated doxorubicin-induced cell cycle arrest (IC50=1.7 microM) and enhanced doxorubicin cytotoxicity (IC50=0.44 microM) while displaying no single agent activity.  相似文献   

9.
The first synthesis of the single isomers (3R,4R,5R); (3S,4S,5S): (3R,4R,5S) and (3S,4S,5R) of 5-hydroxymethyl-piperidine-3,4-diol from Arecolin is reported, including the synthesis of a series of N-substituted derivatives of the (3R,4R,5R)-isomer (Isofagomine). The inhibitory effect of these isomers as well as of a series of N-substituted derivatives of the (3R,4R,5R)-isomer and selected hydroxypiperidine analogues on liver glycogen phosphorylase (GP) showed that the (3R,4R,5R) configuration was essential for obtaining an inhibitory effect at submicromolar concentration. The results also showed that all three hydroxy groups should be present and could not be substituted, nor were extra OH groups allowed if sub-micromolar inhibition should be obtained. Some inhibitory effect was retained for N-substituted derivatives of Isofagomine; however, N-substitution always resulted in a loss of activity compared to the parent compound, IC50 values ranging from 1 to 100 microM were obtained for simple alkyl, arylalkyl and benzoylmethyl substituents. Furthermore, we found that it was not enough to assure inhibitory effect to have the (R,R,R) configuration. Fagomine, the (2R,3R,4R)-2-hydroxymethylpiperidine-3,4-diol analogue, showed an IC50 value of 200 microM compared to 0.7 microM for Isofagomine. In addition, Isofagomine was able to prevent basal and glucagon stimulated glycogen degradation in cultured hepatocytes with IC50 values of 2-3 microM.  相似文献   

10.
We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid binding (IC(50) = 3.6 microM), and potent AMPA receptor agonist activity on cortical neurons (EC(50) = 0.25 microM), whereas (R)-ACPA was essentially inactive. Like (S)-ACPA, (S)-demethyl-ACPA displayed high AMPA receptor affinity (IC(50) = 0.039 microM), but was found to be a relatively weak AMPA receptor agonist (EC(50) = 12 microM). The stereoselectivity observed for demethyl-ACPA was high when based on AMPA receptor affinity (eudismic ratio = 250), but low when based on electrophysiological activity (eudismic ratio = 10). (R)-Demethyl-ACPA also possessed a weak NMDA receptor antagonist activity (IC(50) = 220 microM). Among the enantiomers tested, only (S)-demethyl-ACPA showed activity at metabotropic receptors, being a weak antagonist at the mGlu(2) receptor subtype (K(B) = 148 microM).  相似文献   

11.
Three known phenolic compounds, (-)-(R)-nyasol (= 4,4'-(1Z,3R)-Penta-1,4-diene-1,3-diyldiphenol; 1), its derivative 2, and broussonin A (3)--isolated from the rhizomes of Anemarrhena asphodeloides--were for the first time identified as the active principles capable of efficient respiratory-syncytial-virus (RSV) inhibition. The IC50 values of 1-3 against the RSV-A2 strain, propagated in HEp-2 cells, were determined, their activities being higher than that of the standard antiviral drug ribavirin (IC50 = 1.15 microM). In addition, the known, but inactive, compound 'trans-N-(para-coumaroyl)tyramine' (= (2E)-3-(4-hydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide; 4) was isolated from this plant for the first time.  相似文献   

12.
The first reported synthesis of the DNA-PK inhibitor 3-cyano-6-hydrazonomethyl-5-(4-pyridyl)pyrid-[1H]-2-one (OK-1035) is described. The structure of OK-1035 was validated by X-ray crystallography. An IC(50) value of 100 microM was determined for inhibition of DNA-PK, and this is approximately 12-fold higher than that reported previously.  相似文献   

13.
A new phytosphingosine-type ceramide, suillumide (1), was isolated from the EtOH extract of the basidiomycete Suillus luteus (L.) S. F. Gray, along with ten known compounds: ergosta-4,6,8(14),22-tetraen-3-one, ergosterol, ergosterol peroxide, suillin, (E)-3,4,5-trimethoxycinnamic alcohol, 5 alpha,6 alpha-epoxyergosta-8,22-diene-3beta,7 beta-diol, (R)-1-palmitoylglycerol, ergosta-7,9(11),22-triene-3beta,5 alpha,6 beta-triol, cerevisterol, and 4-hydroxybenzoic acid. The structure of 1 was determined on the basis of spectroscopic and mass-spectrometric analyses, as well as by chemical methods. Compound 1 and its synthetic diacetyl derivative 2 were tested for their cytotoxic activities against the human melanoma cell line SK-MEL-1. Both drugs showed IC(50) values of ca. 10 microM after 72 h of exposure.  相似文献   

14.
We have previously shown that (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-Me-Tet-AMPA) is a selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, markedly more potent than AMPA itself, whereas the isomeric compound 1-Me-Tet-AMPA is essentially inactive. We here report the enantiopharmacology of 2-Me-Tet-AMPA in radioligand binding and cortical wedge electrophysiological assay systems, and using cloned AMPA (GluR1-4) and kainic acid (KA) (GluR5, 6, and KA2) receptor subtypes expressed in Xenopus oocytes. 2-Me-Tet-AMPA was resolved using preparative chiral HPLC. Zwitterion (-)-2-Me-Tet-AMPA was assigned the (R)-configuration based on an X-ray crystallographic analysis supported by the elution order of (-)- and (+)-2-Me-Tet-AMPA using four different chiral HPLC columns and by circular dichroism spectra. None of the compounds tested showed detectable affinity for N-methyl-D-aspartic acid (NMDA) receptor sites, and (R)-2-Me-Tet-AMPA was essentially inactive in all of the test systems used. Whereas (S)-2-Me-Tet-AMPA showed low affinity (IC(50) = 11 microM) in the [(3)H]KA binding assay, it was significantly more potent (IC(50) = 0.009 microM) than AMPA (IC(50) = 0.039 microM) in the [(3)H]AMPA binding assay, and in agreement with these findings, (S)-2-Me-Tet-AMPA (EC(50) = 0.11 microM) was markedly more potent than AMPA (EC(50) = 3.5 microM) in the electrophysiological cortical wedge model. In contrast to AMPA, which showed comparable potencies (EC(50) = 1.3-3.5 microM) at receptors formed by the AMPA receptor subunits (GluR1-4) in Xenopus oocytes, more potent effects and a substantially higher degree of subunit selectivity were observed for (S)-2-Me-Tet-AMPA: GluR1o (EC(50) = 0.16 microM), GluR1o/GluR2i (EC(50) = 0.12 microM), GluR3o (EC(50) = 0.014 microM) and GluR4o (EC(50) = 0.009 microM). At the KA-preferring receptors GluR5 and GluR6/KA2, (S)-2-Me-Tet-AMPA showed much weaker agonist effects (EC(50) = 8.7 and 15.3 microM, respectively). It is concluded that (S)-2-Me-Tet-AMPA is a subunit-selective and highly potent AMPA receptor agonist and a potentially useful tool for studies of physiological AMPA receptor subtypes.  相似文献   

15.
A synthetic beta-lactone trans-DU-6622 (3-hydroxy-2-(hydroxymethyl)-5-[7-(methylcarbonyl)-naphthalen++ +-1-yl]pentanoic acid 1,3-lactone, a mixture of (2R, 3R)- and (2S, 3S)-beta-lactones) was found to inhibit HMG-CoA synthase (IC(50): 0. 15 microM) and pancreatic lipase (IC(50): 120 microM). The effects of the optically pure DU-6622 isomers on the two enzymes were compared. The (2R, 3R)-isomer was shown to be a highly specific inhibitor of HMG-CoA synthase (IC(50): 0.098 microM vs 270 microM for pancreatic lipase), while the (2S, 3S)-isomer markedly increased the specificity of lipase inhibition (IC(50): 27 microM vs 31 microM for HMG-CoA synthase). Furthermore, the (2R, 3R)-isomer strongly inhibited the binding of [(14)C]hymeglusin to HMG-CoA synthase, indicating that the isomer was bound to the same site of the synthase as hymeglusin. The (2R, 3R)-beta-lactone is responsible for the specific inhibition of HMG-CoA synthase, while the (2S, 3S)-beta-lactone is responsible for the inhibition of pancreatic lipase.  相似文献   

16.
(+/-)-(2R,3R,5R)-[2-(1'-S-acetamido-3'-methyl)butyl-3-methoxycarbonyl]tetrahydrofuran-5-carboxylic acid (9) and (+/-)-(2R,3R,5R)-[2-(1'-S-acetamido-3'-methyl)butyl-3-(4'-imidazolyl)]tetrahydrofuran 5-carboxylic acid (14) were synthesized as inhibitors of influenza neuraminidase (NA). Both compounds 9 and 14 inhibit influenza NA A with an IC(50) of about 0.5 microM and NA B with an IC(50) of 1.0 microM.  相似文献   

17.
The relaxant activity of 2-(o, p-substituted phenyl)-1H-benzimidazole derivatives with various 5- and 6-position substituents (-H, -CH3, -NO2, -CF3), namely 1-7, was recorded using the in vitro rat aorta ring test. Compounds 3 and 6 [2-(5-nitro-1H-benzimidazol-2-yl)phenol and 2-(4-methoxyphenyl)-5-nitro-1H-benzimidazole] were prepared using a short route, and were the most potent compounds of the series, showing IC50 value of 0.95 and 1.41 (with endothelium) and 2.01 and 3.61 microM (without endothelium), respectively. Studying further structure-activity relationships through the use of bioisosteric substitution in these benzimidazole derivatives should provide novel vasorelaxant leads and possibly against hypertensive diseases.  相似文献   

18.
HA-966 (1-hydroxy-3-aminopyrrolidone-2) is an antagonist at the glycine allosteric site of the N-methyl-D-aspartate receptor ionophore complex. Unlike presently known glycine antagonists, HA-966 is chiral. We report stereoselectivity for the (R)-enantiomer at the glycine antagonist site. In [3H]glycine binding, the (R)-enantiomer has an IC50 of 4.1 +/- 0.6 microM. The racemic mixture has an IC50 of 11.2 +/- 0.5 microM, whereas (S)-HA-966 has an IC50 greater than 900 microM. In glycine-stimulated [3H]1-[1-(2- thienyl)cyclohexyl]piperidine binding, the (R)-enantiomer inhibits with an IC50 of 121 +/- 61 microM, whereas the racemic mixture has an IC50 of 216 +/- 113 microM and (S)-HA-966 is inactive. The inhibition by (R)-HA-966 can be prevented by the addition of glycine. (R)-HA-966 and racemic HA-966, but not (S)-HA-966, also prevent N-methyl-D-aspartate cytotoxicity in cortical cultures. The (R)-enantiomer and, less potently, the (S)-enantiomer inhibit N-methyl-D-aspartate-evoked [3H]norepinephrine release from rat hippocampal slices (IC50 values of about 0.3 mM and 1.6 mM, respectively), but only the inhibition by (R)-HA-966 is reversed by added glycine. In glutamate-evoked contractions of the guinea pig ileum, (R)-HA-966 causes a glycine-reversible inhibition (IC50 of about 150 microM), whereas (S)-HA-966 is much less potent (IC50 of greater than 1 mM). These results demonstrate stereoselectivity of the glycine antagonist site of the N-methyl-D-aspartate receptor complex in a variety of tissues and assays. The stereoselectivity also confirms the specificity of N-methyl-D-aspartate receptors in glutamate-evoked contractions of the guinea pig ileum, and supports their similarity to central N-methyl-D-aspartate receptors.  相似文献   

19.
Wang Y  Shi JG  Wang MZ  Che CT  Yeung JH 《Life sciences》2008,82(1-2):91-98
1, 5-Dihydroxy-2, 3-dimethoxy-xanthone (HM-5) is one of the naturally-occurring xanthones of a Tibetan medicinal herb Halenia elliptica. Recently, it has been shown that HM-5 is one of the phase I metabolites of 1-hydroxy-2, 3, 5-trimethoxy-xanthone (HM-1), the major active component of H. elliptica with potent vasorelaxant actions. This study investigated the vasorelaxant effect of HM-5 and its mechanism(s). HM-5 (0.35-21.9 microM) produced a concentration-dependent relaxation in rat coronary artery rings pre-contracted with 1 microM 5-hydroxytryptamine (5-HT), with an EC(50) of 4.40+/-1.08 microM. Unlike HM-1, the effect of HM-5 was endothelial-independent such that removal of the endothelium did not affect its vasodilator potency. Nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME, 100 microM), the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-alpha] quinoxalin-1-one (ODQ, 10 microM) did not affect the vasodilatory effects of HM-5, thus confirming the non-involvement of endothelium related mechanisms. In endothelium-denuded coronary artery rings, the vasorelaxant effect of HM-5 was inhibited by a potassium channel blocker, TEA (10 mM), and 4-aminopyridine (4-AP, a K(v) blocker; 1 mM) but not by other K+ channel blockers such as iberiotoxin (100 nM), barium chloride (100 microM) and glibenclamide (10 microM). The involvement of Ca2+ channel was studied in artery rings pre-incubated with Ca2+-free buffer (intact endothelium or endothelium-denuded) and primed with 1 microM 5-HT or 60 mM KCl prior to the addition of CaCl2 to elicit contraction. In the 5-HT-primed preparations, HM-5 (34.7 microM) significantly inhibited the CaCl(2)-induced vasoconstriction (89.9% inhibition in intact endothelium artery rings; 83.3% inhibition in endothelium-denuded rings). In the KCl-primed preparations, HM-5 (34.7 microM) produced a 34% inhibition in endothelium-denuded rings. The same concentration of HM-5 inhibited (by 62.3%) the contractile response to 10 microM phorbol 12, 13-diacetate (PDA), a protein kinase C activator, in Ca2+-free solutions. Taken together, this study showed that the mechanisms of the vasorelaxant effects of HM-5 were distinctly different from those of its parent drug HM-1. The vasorelaxant effect of HM-5 was mediated through opening of potassium channel (4-AP) and altering intracellular calcium by partial inhibition of Ca2+ influx through L-type voltage-operated Ca2+ channels and intracellular Ca2+ stores.  相似文献   

20.
Mast cell derived leukotrienes (LT's) play a vital role in pathophysiology of allergy and asthma. We synthesized various analogues of indolyl, naphthyl and phenylethyl substituted halopyridyl, thiazolyl and benzothiazolyl thioureas and examined their in vitro effects on the high affinity IgE receptor/FcERI-mediated mast cell leukotriene release. Of the 22 naphthylethyl thiourea compounds tested, there were seven active compounds and N-[1-(1-naphthyl)ethyl]-N'-[2-(ethyl-4-acetylthiazolyl)]thiourea (17 and 16) (IC(50)=0.002 microM) and N-[1-(1R)-naphthylethyl]-N'-[2-(5-methylpyridyl)]thiourea (5) (IC(50)=0.005 microM) were identified as the lead compounds. Among the 11 indolylethyl thiourea compounds tested, there were seven active compounds and the halopyridyl compounds N-[2-(3-indolylethyl)]-N'-[2-(5-chloropyridyl)]thiourea and N-[2-(3-indolylethyl)]-N'-[2-(5-bromopyridyl)]thiourea were the most active agents and inhibited the LTC(4) release with low micromolar IC(50) values of 4.9 microM and 6.1 microM, respectively. The hydroxylphenyl substituted compounds N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-chloropyridyl)]thiourea (IC(50)=12.6 microM), N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-bromopyridyl)]thiourea (IC(50)=16.8 microM) and N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(pyridyl)]thiourea (IC(50)=8.5 microM) were the most active pyridyl thiourea agents. Notably, the introduction of electron withdrawing or donating groups had a marked impact on the biological activity of these thiourea derivatives and the Hammett sigma values of their substituents were identified as predictors of their potency. In contrast, experimentally determined partition coefficient values did not correlate with the biological activity of the thiourea compounds which demonstrates that their liphophilicity is not an important factor controlling their mast cell inhibitory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号