首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Training at the optimum power load (OPL) is an effective way to improve neuromuscular abilities of highly trained athletes. The purpose of this study was to test the effects of training using the jump squat (JS) or Olympic push-press (OPP) exercises at the OPL during a short-term preseason on speed-power related abilities in high-level under-20 soccer players. The players were divided into two training groups: JS group (JSG) and OPP group (OPPG). Both groups undertook 12 power-oriented sessions, using solely JS or OPP exercises. Pre- and post-6 weeks of training, athletes performed squat jump (SJ), countermovement jump (CMJ), sprinting speed (5, 10, 20 and 30 m), change of direction (COD) and speed tests. To calculate the transfer effect coefficient (TEC) between JS and MPP OPP and the speed in 5, 10, 20, and 30 m, the ratio between the result gain (effect size [ES]) in the untrained exercise and result gain in the trained exercise was calculated. Magnitude based inference and ES were used to test the meaningful effects. The TEC between JS and VEL 5, 10, 20, and 30 m ranged from 0.77 to 1.29, while the only TEC which could be calculated between OPP and VEL 5 was rather low (0.2). In addition, the training effects of JS on jumping and speed related abilities were superior (ES ranging from small to large) to those caused by OPP (trivial ES). To conclude, the JS exercise is superior to the OPP for improving speed-power abilities in elite young soccer players.  相似文献   

2.

Aim

The current study had two aims. The primary purpose was to examine the association between serum vitamin D levels and the ergometric evaluation of muscle strength, aerobic capacity, and speed in professional soccer players. The secondary aim was to evaluate the effects of the soccer off-season period on serum vitamin D levels.

Methods

Sixty-seven Caucasian male soccer players (age 25.6±6.2 and height 1.81±0.08 m), members of two Greek Superleague Soccer teams and one Football-league championship team participated in this study. Exercise performance testing for the determination of squat jump (SJ), countermovement jump (CMJ), 10 (10 m) and 20 meters (20 m) sprint performance, maximal oxygen consumption (VO2max), anthropometry, and blood sampling were performed before (pre) and after (post) the six-week off-season period.

Results

Analysis of our results showed the following: (a) a significant correlations between serum vitamin D levels and performance parameters in both pre (SJ; P<0.001, CMJ; P<0.001, VO2max; P<0.001, 10 m; P<0.001, and 20 m; P<0.001) and post (SJ; P<0.001, CMJ; P<0.001, VO2max; P = 0.006, 10 m; P<0.001, and 20 m; P<0.001) experimental sessions. (b) Vitamin D concentration increased significantly (P<0.001) following the six-week off-season period compared to baseline, while at the same time all measured performance parameters decreased (SJ; P<0.001, CMJ; P<0.001, 10 m; P<0.001, 20 m; P<0.001, VO2max; P<0.001).

Discussion

Our findings suggest that vitamin D levels are associated with the ergometric evaluation of muscle strength, as expressed by SJ and CMJ, sprinting capacity, and VO2max in professional soccer players, irrespective the levels of performance. Furthermore, our data reaffirm the importance of UVB on serum vitamin D levels. Moreover, reductions in exercise training stress may also have beneficial effects on vitamin D levels, suggesting a possible association of its levels and the training-induced stress. Our results indicate a possibly bidirectional interaction between soccer performance indices and vitamin D levels.  相似文献   

3.
The purpose of this investigation was to observe the influence of increasing amounts of preactivity and eccentric muscle activity imposed by three different jump types on concentric vertical jumping performance. Sixteen athletes involved in jumping-related sports at Appalachian State University, which is a Division IA school, performed a static jump (SJ), counter-movement jump (CMJ), and drop jump (DJ). Force, power, velocity, and jump height were measured during each jump type. In addition, muscle activity was measured from two agonist muscles (vastus lateralis, vastus medialis) and one antagonist muscle (biceps femoris). Preactivity and eccentric phase muscle activity of the agonist muscles (average integrated electromyography) was significantly (p < or = 0.05) higher during the DJ (preactivity, 0.2 +/- 0.11 mV; eccentric phase, 1.00 +/- 0.36 mV) in comparison with the CMJ (preactivity, 0.11 +/- 0.10 mV; eccentric phase, 0.45 +/- 0.17 mV). Peak concentric force was highest during the DJ and was significantly different among all three jump types (SJ, CMJ, DJ). Maximal jump height was significantly higher during the DJ (0.41 +/- 0.05 m) and CMJ (0.40 +/- 0.06 m) compared with the SJ (0.37 +/- 0.07 m). However, no significant difference in jump height existed between the CMJ and DJ. A positive energy balance, as assessed by force-displacement curves during the eccentric and concentric phases, was observed during the CMJ, and a negative energy balance was observed during the DJ. The data from this investigation indicate that a significant increase in concentric vertical jump performance is associated with increased levels of preactivity and eccentric phase muscle activity (SJ to CMJ). However, higher eccentric loading (CMJ to DJ) leads to a negative energy balance during the eccentric phase, which may relate to a non-significant increase in vertical jump height, even with coincidental increases in peak concentric force. Practitioners may want to focus on improving eccentric phase muscle activity through the use of plyometrics to improve overall jumping performance in athletes.  相似文献   

4.
The purpose of this study was to investigate the acute effect of 3 warm-up protocols on peak power production during countermovement jump (CMJ) testing. The intention was to devise and compare practical protocols that could be applied as a warm-up immediately before competition matches or weight training sessions. A group of 22 elite Australian Rules Football players performed 3 different warm-up protocols over 3 testing sessions in a randomized order. The protocols included a series of low load exercises targeting the gluteal muscle group (GM-P), a whole-body vibration (WBV) protocol (WBV-P) wherein the subjects stood on a platform vibrating at 30 Hz for 45 seconds, and a no-warm-up condition (CON). The CMJ testing was performed within 5 minutes of each warm-up protocol on an unloaded Smith machine using a linear encoder to measure peak power output. Peak power production was significantly greater after the GM-P than after both the CON (p < 0.05) and WBV-P (p < 0.01). No significant differences in peak power production were detected between the WBV-P and CON. These results have demonstrated that a low load exercise protocol targeting the gluteal muscle group is effective at acutely enhancing peak power output in elite athletes. The mechanisms for the observed improvements are unclear and warrant further investigation. Coaches may consider incorporating low load exercises targeting the gluteal muscle group into the warm-up of athletes competing in sports requiring explosive power output of the lower limbs.  相似文献   

5.
The purpose of this study was to evaluate the effects of a complex training program, a combined practice of weight training and plyometrics, on explosive strength development of young basketball players. Twenty-five young male athletes, aged 14-15 years old, were assessed using squat jump (SJ), countermovement jump (CMJ), Abalakov test (ABA), depth jump (DJ), mechanical power (MP), and medicine ball throw (MBT), before and after a 10-week in-season training program. Both the control group (CG; n = 10) and the experimental group (EG; n = 15) kept up their regular sports practice; additionally, the EG performed 2 sessions per week of a complex training program. The EG significantly improved in the SJ, CMJ, ABA, and MBT values (p < 0.05). The CG significantly decreased the values (p < 0.05) of CMJ, ABA, and MP, while significantly increasing the MBT values (p < 0.05). Our results support the use of complex training to improve the upper and lower body explosivity levels in young basketball players. In conclusion, this study showed that more strength conditioning is needed during the sport practice season. Furthermore, we also conclude that complex training is a useful working tool for coaches, innovative in this strength-training domain, equally contributing to a better time-efficient training.  相似文献   

6.
Global positioning system (GPS) technology has improved the speed, accuracy, and ease of time-motion analyses of field sport athletes. The large volume of numerical data generated by GPS technology is usually summarized by reporting the distance traveled and time spent in various locomotor categories (e.g., walking, jogging, and running). There are a variety of definitions used in the literature to represent these categories, which makes it nearly impossible to compare findings among studies. The purpose of this work was to propose standard definitions (velocity ranges) that were determined by an objective analysis of time-motion data. In addition, we discuss the limitations of the existing definition of a sprint and present a new definition of sprinting for field sport athletes. Twenty-five GPS data files collected from 5 different sports (men's and women's field hockey, men's and women's soccer, and Australian Rules Football) were analyzed to identify the average velocity distribution. A curve fitting process was then used to determine the optimal placement of 4 Gaussian curves representing the typical locomotor categories. Based on the findings of these analyses, we make recommendations about sport-specific velocity ranges to be used in future time-motion studies of field sport athletes. We also suggest that a sprint be defined as any movement that reaches or exceeds the sprint threshold velocity for at least 1 second and any movement with an acceleration that occurs within the highest 5% of accelerations found in the corresponding velocity range. From a practical perspective, these analyses provide conditioning coaches with information on the high-intensity sprinting demands of field sport athletes, while also providing a novel method of capturing maximal effort, short-duration sprints.  相似文献   

7.
The purpose of this study was to evaluate the immediate influence of eccentric muscle action on vertical jump performance in athletes performing sports with a high demand of explosive force development. In this randomized, controlled crossover trial, 13 Swiss elite athletes (national team members in ski jump, ski alpine, snowboard freestyle and alpine, ski freestyle, and gymnastics) with a mean age of 22 years (range 20-28) were randomized into 2 groups. After a semistandardized warm-up, group 1 did 5 jumps from a height of 60 cm, landing with active stabilization in 90 degrees knee flexion. One minute after these modified drop jumps, they performed 3 single squat jumps (SJ) and 3 single countermovement jumps (CMJ) on a force platform. The athletes repeated the procedure after 1 hour without the modified drop jumps. In a crossover manner, group 2 did the first warm-up without and the second warm-up with the modified drop jumps. Differences of the performance (jump height and maximal power) between the different warm-ups were the main outcomes. The mean absolute power and absolute height (without drop jumps) were CMJ 54.9 W.kg(-1) (SD = 4.1), SJ 55.0 W.kg(-1) (SD = 5.1), CMJ 44.1 cm (SD = 4.1), and SJ 40.8 cm (SD = 4.1). A consistent tendency for improvement with added drop jumps to the warm-up routine was observed compared with warm-up without drop jumps: maximal power CMJ +1.02 W.kg(-1) (95% confidence interval [CI] = +0.03 to +2.38), p = 0.045; maximal power SJ +0.8 W.kg(-1) (95% CI = -0.34 to +2.02), p = 0.148; jump height CMJ +0.48 cm (95% CI = -0.26 to +1.2), p = 0.182; SJ +0.73 cm (95% CI = -0.36 to +1.18), p = 0.169. Athletes could add modified drop jumps to the warm-up before competitions to improve explosive force development.  相似文献   

8.
This study examined the effects of a progressive resistance training program in addition to soccer training on the physical capacities of male adolescents. Eighteen soccer players (age: 12-15 years) were separated in a soccer (SOC; n = 9) and a strength-soccer (STR; n = 9) training group and 8 subjects of similar age constituted a control group. All players followed a soccer training program 5 times a week for the development of technical and tactical skills. In addition, the STR group followed a strength training program twice a week for 16 weeks. The program included 10 exercises, and at each exercise, 2-3 sets of 8-15 repetitions with a load 55-80% of 1 repetition maximum (1RM). Maximum strength ([1RM] leg press, bench-press), jumping ability (squat jump [SJ], countermovement jump [CMJ], repeated jumps for 30 seconds) running speed (30 m, 10 x 5-m shuttle run), flexibility (seat and reach), and soccer technique were measured at the beginning, after 8 weeks, and at the end of the training period. After 16 weeks of training, 1RM leg press, 10 x 5-m shuttle run speed, and performance in soccer technique were higher (p < 0.05) for the STR and the SOC groups than for the control group. One repetition maximum bench press and leg press, SJ and CMJ height, and 30-m speed were higher (p < 0.05) for the STR group compared with SOC and control groups. The above data show that soccer training alone improves more than normal growth maximum strength of the lower limps and agility. The addition of resistance training, however, improves more maximal strength of the upper and the lower body, vertical jump height, and 30-m speed. Thus, the combination of soccer and resistance training could be used for an overall development of the physical capacities of young boys.  相似文献   

9.
Previous studies have suggested that short-term whole-body vibration (WBV) training produces neuromuscular improvement similar to that of power and strength training. However, it is yet to be determined whether short-term WBV exposure produces neurogenic enhancement for power, speed, and agility. The purpose of this study was to investigate the effect short-term WBV training had on vertical jump, sprint, and agility performance in nonelite athletes. Twenty-four sport science students (16 men and 8 women) were randomly assigned to 2 groups: WBV training or control. Each group included 8 men and 4 women. Countermovement jump (CMJ) height, squat jump (SJ) height, sprint speed over 5, 10, and 20 m, and agility (505, up and back) were performed by each participant before and after 9 days of either no training (control) or WBV training. Perceived discomfort of every participant was recorded after daily WBV exposure and nonexposure. There were no significant differences between WBV and control groups for CMJ, SJ, sprints, and agility. Perceived discomfort differed between the first and subsequent days of WBV training (p < 0.05); however, there was no difference between the WBV and control groups. It is concluded that short-term WBV training did not enhance performance in nonelite athletes.  相似文献   

10.
The force-velocity relationship on a Monark ergometer and the vertical jump height have been studied in 152 subjects practicing different athletic activities (sprint and endurance running, cycling on track and/or road, soccer, rugby, tennis and hockey) at an average or an elite level. There was an approximately linear relationship between braking force and peak velocity for velocities between 100 and 200 rev.min-1. The highest indices of force P0, velocity V0 and maximal anaerobic power (Wmax) were observed in the power athletes. There was a significant relationship between vertical jump height and Wmax related to body mass.  相似文献   

11.
The purpose of this study was to compare the effects of combined strength and plyometric training with strength training alone on power-related measurements in professional soccer players. Subjects in the intervention team were randomly divided into 2 groups. Group ST (n = 6) performed heavy strength training twice a week for 7 weeks in addition to 6 to 8 soccer sessions a week. Group ST+P (n = 8) performed a plyometric training program in addition to the same training as the ST group. The control group (n = 7) performed 6 to 8 soccer sessions a week. Pretests and posttests were 1 repetition maximum (1RM) half squat, countermovement jump (CMJ), squat jump (SJ), 4-bounce test (4BT), peak power in half squat with 20 kg, 35 kg, and 50 kg (PP20, PP35, and PP50, respectively), sprint acceleration, peak sprint velocity, and total time on 40-m sprint. There were no significant differences between the ST+P group and ST group. Thus, the groups were pooled into 1 intervention group. The intervention group significantly improved in all measurements except CMJ, while the control group showed significant improvements only in PP20. There was a significant difference in relative improvement between the intervention group and control group in 1RM half squat, 4BT, and SJ. However, a significant difference between groups was not observed in PP20, PP35, sprint acceleration, peak sprinting velocity, and total time on 40-m sprint. The results suggest that there are no significant performance-enhancing effects of combining strength and plyometric training in professional soccer players concurrently performing 6 to 8 soccer sessions a week compared to strength training alone. However, heavy strength training leads to significant gains in strength and power-related measurements in professional soccer players.  相似文献   

12.
The purpose of this study was to assess the magnitude of upper and lower body strength changes in highly trained professional rugby union players after 2 years of training. An additional purpose was to examine if the changes in strength were influenced by the starting strength level, lean mass index (LMI), or chronological age. This longitudinal investigation tracked maximal strength and body composition over 3 consecutive years in 20 professional rugby union athletes. Maximal strength in the bench press and back squat and body composition was assessed during preseason resistance training sessions each year. The athletes completed a very rigorous training program throughout the duration of this study consisting of numerous resistance, conditioning and skills training sessions every week. The primary findings of this study were as follows: (a) Maximal upper and lower body strength was increased by 6.5-11.5% after 2 years of training (p = 0.000-0.002 for bench press; p = 0.277-0.165 for squat); (b) magnitude of the improvement was negatively associated with initial strength level (r = -0.569 to -0.712, p ≤ 0.05); (c) magnitude of improvement in lower body maximal strength was positively related to the change in LMI (an indicator of hypertrophy; r = 0.692-0.880, p ≤ 0.05); and (d) magnitude of improvement was not associated with the age of professional rugby union athletes (r = -0.068 to -0.345). It appears particularly important for training programs to be designed for continued muscle hypertrophy in highly trained athletes. Even in professional rugby union athletes, this must be achieved in the face of high volumes of aerobic and skills training if strength is to be increased.  相似文献   

13.
The purpose of this study was to evaluate the effects of sprint training on muscle function and dynamic athletic performance and to compare them with the training effects induced by standard plyometric training. Male physical education students were assigned randomly to 1 of 3 groups: sprint group (SG; n = 30), plyometric group (PG; n = 30), or control group (CG; n = 33). Maximal isometric squat strength, squat- and countermovement jump (SJ and CMJ) height and power, drop jump performance from 30-cm height, and 3 athletic performance tests (standing long jump, 20-m sprint, and 20-yard shuttle run) were measured prior to and after 10 weeks of training. Both experimental groups trained 3 days a week; SG performed maximal sprints over distances of 10-50 m, whereas PG performed bounce-type hurdle jumps and drop jumps. Participants in the CG group maintained their daily physical activities for the duration of the study. Both SG and PG significantly improved drop jump performance (15.6 and 14.2%), SJ and CMJ height ( approximately 10 and 6%), and standing long jump distance (3.2 and 2.8%), whereas the respective effect sizes (ES) were moderate to high and ranged between 0.4 and 1.1. In addition, SG also improved isometric squat strength (10%; ES = 0.4) and SJ and CMJ power (4%; ES = 0.4, and 7%; ES = 0.4), as well as sprint (3.1%; ES = 0.9) and agility (4.3%; ES = 1.1) performance. We conclude that short-term sprint training produces similar or even greater training effects in muscle function and athletic performance than does conventional plyometric training. This study provides support for the use of sprint training as an applicable training method of improving explosive performance of athletes in general.  相似文献   

14.
This study investigated the physiological and anthropometric characteristics of elite women rugby league players and developed physical performance standards for these athletes. Thirty-two elite women rugby league players underwent measurements of standard anthropometry (body mass, height, sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (505 test), glycolytic capacity (glycolytic agility test), and estimated maximal aerobic power (multistage fitness test). The skinfold thickness, speed, agility, vertical jump height, glycolytic capacity, and estimated maximal aerobic power results were 6.0-38.1% poorer than previously reported for elite women team sport athletes (e.g., rugby union, soccer, and hockey). Although no significant differences (p > 0.05) were detected between selected and nonselected players for any of the physiological or anthropometric characteristics, significant differences (p < 0.05) were detected between forwards and backs for body mass, skinfold thickness, 10-, 20-, and 40-m speed, and estimated maximal aerobic power. When data were analyzed according to positional similarities, it was found that the hit-up forwards positional group were heavier, had greater skinfold thickness, and had lower 10-, 20-, and 40-m speed, muscular power, glycolytic capacity, and estimated maximal aerobic power than the adjustables and outside backs positional groups. The results of this study show that elite women rugby league players have slower speed and agility, lower muscular power, glycolytic capacity, and estimated maximal aerobic power, and greater body mass and skinfold thickness than previously reported for other elite women team sport athletes. These findings show the need to develop all physiological parameters to allow elite women rugby league players to more effectively tolerate the physiological demands of competition, reduce fatigue-related errors in skill execution, and decrease the risk of injury.  相似文献   

15.
Acceleration is a significant feature of game-deciding situations in the various codes of football. However little is known about the acceleration characteristics of football players, the effects of acceleration training, or the effectiveness of different training modalities. This study examined the effects of resisted sprint (RS) training (weighted sled towing) on acceleration performance (0-15 m), leg power (countermovement jump [CMJ], 5-bound test [5BT], and 50-cm drop jump [50DJ]), gait (foot contact time, stride length, stride frequency, step length, and flight time), and joint (shoulder, elbow, hip, and knee) kinematics in men (N = 30) currently playing soccer, rugby union, or Australian football. Gait and kinematic measurements were derived from the first and second strides of an acceleration effort. Participants were randomly assigned to 1 of 3 treatment conditions: (a) 8-week sprint training of two 1-h sessions x wk(-1) plus RS training (RS group, n = 10), (b) 8-week nonresisted sprint training program of two 1-h sessions x wk(-1) (NRS group, n = 10), or (c) control (n = 10). The results indicated that an 8-week RS training program (a) significantly improves acceleration and leg power (CMJ and 5BT) performance but is no more effective than an 8-week NRS training program, (b) significantly improves reactive strength (50DJ), and (c) has minimal impact on gait and upper- and lower-body kinematics during acceleration performance compared to an 8-week NRS training program. These findings suggest that RS training will not adversely affect acceleration kinematics and gait. Although apparently no more effective than NRS training, this training modality provides an overload stimulus to acceleration mechanics and recruitment of the hip and knee extensors, resulting in greater application of horizontal power.  相似文献   

16.
The purpose of this study was to examine the effects of regular whole-body vibration (WBV) training on lower body strength and power. National Collegiate Athletic Association Division III softball athletes (n = 9) completed the 9-week protocol as part of their off-season strength and conditioning program. The athletes were randomly assigned to 1 of 2 groups. Week 1, pretesting included 3 repetition maximum (3RM) back squat, standing long jump (SLJ), and vertical countermovement jump (VCMJ). Phase I training (weeks 2-4) consisted of either WBV training (group 1) or conventional strength training (CST, group 2). The primary programmatic difference between WBV and CST was the inclusion of WBV sets after squat sets. Posttesting (3RM squat, SLJ, VCMJ) occurred at week 5. Phase II training (weeks 6-8) consisted of either WBV training (group 2) or CST (group 1). Posttesting was repeated at week 9 after the completion of phase II. Three 2 × 2 mixed factorial analyses of variance were computed. No significant differences (p > 0.05) were found between groups or between groups and testing period for the SLJ, VCMJ, and estimated 1RM back squat. Increases (p < 0.05) were observed in SLJ, VCMJ, and back squat from pretest to posttest 1. Back squat increased (p < 0.05) from posttest 1 to posttest 2. All the athletes experienced significantly greater (p < 0.05) percent changes from pretest to posttest 1 for SLJ and VCMJ. These results indicate that the inclusion of WBV as part of an off-season strength and conditioning program has no apparent benefit over CST methods for collegiate softball players.  相似文献   

17.
This study examined in pubescent swimmers the effects on front crawl performances of a 6-week plyometric training (PT) in addition to the habitual swimming program. Swimmers were assigned to a control group (n = 11, age: 14.1 ± 0.2 years; G(CONT)) and a combined swimming and plyometric group (n = 12, age: 14.3 ± 0.2 years; GSP), both groups swimming 5.5 h · wk(-1) during a 6-week preseason training block. In the GSP, PT consisted of long, lateral high and depth jumps before swimming training 2 times per week. Pre and posttests were performed by jump tests (squat jump [SJ], countermovement jump [CMJ]) and swim tests: a gliding task, 400- and 50-m front crawl with a diving start (V400 and V50, m · s(-1)), and 2 tests with a water start without push-off on the wall (25 m in front crawl and 25 m only with kicks). Results showed improvement only for GSP for jump tests (Δ = 4.67 ± 3.49 cm; Δ = 3.24 ± 3.17 cm; for CMJ and SJ, respectively; p < 0.05) and front crawl tests (Δ = 0.04 ± 0.04 m · s(-1); Δ = 0.04 ± 0.05 m · s(-1); for V50 and V400, respectively; p < 0.05). Significant correlations were found for GSP between improvements in SJ and V50 (R = 0.73, p < 0.05). Results suggested a positive effect of PT on specific swimming tasks such as dive or turn but not in kicking propulsion. Because of the practical setup of the PT and the relevancy of successful starts and turns in swimming performances, it is strongly suggested to incorporate PT in pubescent swimmers' training and control it by jump performances.  相似文献   

18.
This study investigated the physiological and anthropometric characteristics of junior rugby league players over a competitive season. Forty-five rugby league players were allocated into training (n = 36) and nonexercise control (n = 9) groups. The training group participated in 2 field-training sessions each week with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility ('L run'), and estimated maximal aerobic power (multi-stage fitness test) in December (off-season), March (preseason), May (midseason), and August (end-season). Training loads progressively increased in the general preparatory phase of the season (preseason period), and declined slightly during the competitive phase of the season. Match intensity and match loads decreased throughout the season. Increases in estimated maximal aerobic power and muscular power and reductions in skinfold thickness occurred during the general preparatory phase of the season, and were maintained throughout the competitive phase of the season. These findings suggest that high training loads in the general preparatory phase of the season and low match loads in the competitive phase of the season allow junior rugby league players to maintain a high level of fitness throughout an entire competitive season.  相似文献   

19.
The purpose of this study was to develop an artificial neural network (ANN) for predicting lower extremity joint torques using the ground reaction force (GRF) and related parameters derived by the GRF during counter-movement jump (CMJ) and squat jump (SJ). Ten student athletes performed CMJ and SJ. Force plate and kinematic data were recorded. Joint torques were calculated using inverse dynamics and ANN. We used a fully connected, feed-forward network. The network comprised of one input layer, one hidden layer and one output layer. It was trained by error back-propagation algorithm using Steepest Descent Method. Input parameters of the ANN were GRF measurements and related parameters. Output parameters were three lower extremity joint torques. ANN model fitted well with the results of the inverse dynamics output. Our observations indicate that the model developed in this study can be used to estimate three lower extremity joint torques for CMJ and SJ based on ground reaction force data and related parameters.  相似文献   

20.
The purpose of this study was to determine the effects of 16 weeks of contrast training (CT) on older adults (with different levels of physical conditioning) in vertical jump performance (squat jump [SJ], countermovement jump [CMJ], CMJ during 15 seconds [CMJ15], depth jump [DJ]), body weight, fat percentage, muscle mass (MM), muscle cross-sectional area ([CSA] of the arm and thigh) and biochemical parameters (creatine kinase [CK], creatinine, and urea). Sixteen older (63.55 ± 6.89 years) recreational master runners (A) and 16 physically active older people (60.30 ± 5.18 years) though not athletes (NA), participated in the CT using a combination of heavy-resistance and explosive exercise. The dependent variables were measured pretraining and posttraining. The CT resulted in significant improvements (α = 0.05) for both groups in jump performance. The SJ height improved in NA by 21.68% and in A by 21.81%, the CMJ height increased in NA by 21.51% and in A by 14.81%, the DJ height increased in NA by 26.45% and in A by 7.43%, and CMJ15 increased in NA by 6.20% and in A by 6.17%). Significant improvements in MM (16.44% in NA and 14.78% in A), thigh CSA (19.68% in NA and 21.67% in A), and arm CSA (7.43% in NA and 5.52% in A), and significant decreases in creatinine (8.65%) and CK (25.49%) in A were observed. In conclusion, CT improved vertical jump performance and MM in both groups, regardless of the training history and current physical activity of each group. These improvements were accompanied by a slight decrease in body fat but no changes in total body weight. These findings suggest that CT can have a significant effect on maximal jump height and MM in NA and A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号