首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
It has been shown that reactive oxygen species (ROS) contribute to the central effect of ANG II on blood pressure (BP). Recent studies have implicated an antihypertensive action of estrogen in ANG II-infused female mice. The present study used in vivo telemetry recording and in vitro living mouse brain slices to test the hypothesis that the central activation of estrogen receptors in male mice inhibits ANG II-induced hypertension via the modulation of the central ROS production. In male wild-type mice, the systemic infusion of ANG II induced a significant increase in BP (Delta30.1 +/- 2.5 mmHg). Either central infusion of Tempol or 17beta-estradiol (E2) attenuated the pressor effect of ANG II (Delta10.9 +/- 2.3 and Delta4.5 +/- 1.4 mmHg), and the protective effect of E2 was prevented by the coadministration of an estrogen receptor, antagonist ICI-182780 (Delta23.6 +/- 3.1 mmHg). Moreover, the ganglionic blockade on day 7 after the start of ANG II infusions resulted in a smaller reduction of BP in central Tempol- and in central E2-treated males, suggesting that estrogen inhibits the central ANG II-induced increases in sympathetic outflow. In subfornical organ slices, the application of ANG II resulted in a 21.5 +/- 2.5% increase in ROS production. The coadministration of irbesartan, an ANG II type 1 receptor antagonist, or the preincubation of brain slices with Tempol blocked ANG II-induced increases in ROS production (-1.8 +/- 1.6% and -1.0 +/- 1.8%). The ROS response to ANG II was also blocked by E2 (-3.2 +/- 2.4%). The results suggest that the central actions of E2 are involved in the protection from ANG II-induced hypertension and that estrogen modulation of the ANG II-induced effects may involve interactions with ROS production.  相似文献   

2.
Induction of hemeoxygenase-1 (HO-1) lowers blood pressure and reduces organ damage in hypertensive animal models; however, a potential protective role for HO-1 induction against diabetic-induced glomerular injury remains unclear. We hypothesize that HO-1 induction will protect against diabetes-induced glomerular injury by maintaining glomerular integrity and inhibiting renal apoptosis, inflammation, and oxidative stress. Diabetes was induced with streptozotocin in spontaneously hypertensive rats (SHR) as a model where the coexistence of hypertension and diabetes aggravates the progression of diabetic renal injury. Control and diabetic SHR were randomized to receive vehicle or the HO-1 inducer cobalt protoporphyrin (CoPP). Glomerular albumin permeability was significantly greater in diabetic SHR compared with control, consistent with an increase in apoptosis and decreased glomerular nephrin and α(3)β(1)-integrin protein expression in diabetic SHR. CoPP significantly reduced albumin permeability and apoptosis and restored nephrin and α(3)β(1)-integrin protein expression levels in diabetic SHR. Glomerular injury in diabetic SHR was also associated with increases in NF-κB-induced inflammation and oxidative stress relative to vehicle-treated SHR, and CoPP significantly blunted diabetes-induced increases in glomerular inflammation and oxidative stress in diabetic SHR. These effects were specific to exogenous stimulation of HO-1, since incubation with the HO inhibitor stannous mesoporphyrin alone did not alter glomerular inflammatory markers or oxidative stress yet was able to prevent CoPP-mediated decreases in these parameters. These data suggest that induction of HO-1 reduces diabetic induced-glomerular injury and apoptosis and these effects are associated with decreased NF-κB-induced inflammation and oxidative stress.  相似文献   

3.
Heme oxygenase (HO) is a microsomal enzyme that oxidatively cleaves heme to form biliverdin, releasing iron and carbon monoxide (CO). Thus, HO not only controls the availability of heme for the synthesis of hemeproteins but also generates CO, which binds to the heme moiety of hemoproteins, thereby affecting their enzymatic activity. The present study was undertaken to explore changes in the relative expression of renal HO-1 and HO-2 in response to modulators and the effect on blood pressure regulation in spontaneously hypertensive rats (SHR). Immunohistochemistry confirmed a cobalt protoporphyrin (CoPP)-mediated increase in HO-1 protein. After a single injection of CoPP (5 mg/100 gram body weight) in 7-week-old SHR, blood pressure significantly decreased (p<0.01) while renal HO activity increased 6-fold over controls. CoPP pretreatment deceased the levels of the renal cytochrome P450-derived arachidonic acid metabolite, 20-HETE, a powerful vasoconstrictor, by 65% in renal tissue. Western blot analysis demonstrated that CoPP significantly increased HO-1 protein expression in the cortex and outer medulla and, to a lesser degree, in the inner medulla of the rat kidney. HO-2 was constitutively expressed in all parts of the kidney, and did not significantly change after treatment with CoPP. These results indicate that selective induction of cortical and outer medullary HO-1 is associated with a decrease in 20-HETE and blood pressure, suggesting an important role for HO-1 activity in the regulation of urine volume, electrolyte excretion and blood pressure.  相似文献   

4.
Infusion of angiotensin II (ANG II) causes salt-sensitive hypertension. It is unclear whether this is due to the body's inability to suppress ANG II during increased salt intake or, rather, an elevated basal level of plasma ANG II itself. To distinguish between these mechanisms, Sprague-Dawley rats were instrumented with arterial and venous catheters for measurement of arterial pressure and infusion of drugs, respectively. The sensitivity of arterial pressure to salt was measured in four groups with the following treatments: 1) saline control (Con, n = 12); 2) administration of the angiotensin-converting enzyme inhibitor enalapril to block endogenous ANG II (ANG-Lo, n = 10); 3) administration of enalapril and 5 ng.kg(-1).min(-1) ANG II to clamp plasma ANG II at normal levels (ANG-Norm, n = 10); and 4) administration of enalapril and 20 ng.kg(-1).min(-1) ANG II to clamp ANG II at high levels (ANG-Hi, n = 10). Rats ingested a 0.4% NaCl diet for 3 days and then a 4.0% NaCl diet for 11 days. Arterial pressure of rats fed the 0.4% NaCl diet was lower in ANG-Lo (84 +/- 2 mmHg) compared with Con (101 +/- 3 mmHg) and ANG-Norm (98 +/- 4 mmHg) groups, whereas ANG-Hi rats were hypertensive (145 +/- 4 mmHg). Salt sensitivity was expressed as the change in arterial pressure divided by the change in sodium intake on the last day of the 4.0% NaCl diet. Salt sensitivity (in mmHg/meq Na) was lowest in Con rats (0.0 +/- 0.1) and progressed from ANG-Lo (0.8 +/- 0.2) to ANG-Norm (1.5 +/- 0.5) to ANG-Hi (3.5 +/- 0.5) rats. We conclude that the major determinant of salt sensitivity of arterial pressure is the basal level of plasma ANG II rather than the responsiveness of the renin-angiotensin system.  相似文献   

5.
Studies were designed to examine the hypothesis that the renal medulla of Dahl salt-sensitive (Dahl S) rats has a reduced capacity to generate nitric oxide (NO), which diminishes the ability to buffer against the chronic hypertensive effects of small elevations of circulating ANG II. NO synthase (NOS) activity in the outer medulla of Dahl S rats (arginine-citrulline conversion assay) was significantly reduced. This decrease in NOS activity was associated with the downregulation of protein expression of NOS I, NOS II, and NOS III isoforms in this region as determined by Western blot analysis. In anesthetized Dahl S rats, we observed that a low subpressor intravenous infusion of ANG II (5 ng. kg(-1). min(-1)) did not increase the concentration of NO in the renal medulla as measured by a microdialysis with oxyhemoglobin trapping technique. In contrast, ANG II produced a 38% increase in the concentration of NO (87 +/- 8 to 117 +/- 8 nmol/l) in the outer medulla of Brown-Norway (BN) rats. The same intravenous dose of ANG II reduced renal medullary blood flow as determined by laser-Doppler flowmetry in Dahl S, but not in BN rats. A 7-day intravenous ANG II infusion at a dose of 3 ng. kg(-1). min(-1) did not change mean arterial pressure (MAP) in the BN rats but increased MAP in Dahl S rats from 120 +/- 2 to 138 +/- 2 mmHg (P < 0.05). ANG II failed to increase MAP after NO substrate was provided by infusion of L-arginine (300 microg. kg(-1). min(-1)) into the renal medulla of Dahl S rats. Intravenous infusion of L-arginine at the same dose had no effect on the ANG II-induced hypertension. These results indicate that an impaired NO counterregulatory system in the outer medulla of Dahl S rats makes them more susceptible to the hypertensive actions of small elevations of ANG II.  相似文献   

6.
Heme oxygenase and the cardiovascular-renal system   总被引:12,自引:0,他引:12  
Heme oxygenase (HO) has been shown to be important for attenuating the overall production of reactive oxygen species (ROS) through its ability to degrade heme and to produce carbon monoxide (CO), biliverdin/bilirubin, and the release of free iron. Excess free heme catalyzes the formation of ROS, which may lead to endothelial cell (EC) dysfunction as seen in numerous pathological conditions including hypertension and diabetes, as well as ischemia/reperfusion injury. The upregulation of HO-1 can be achieved through the use of pharmaceutical agents, such as metalloporphyrins and some HMG-CoA reductase inhibitors. Among other agents, atrial natriretic peptide and donors of nitric oxide (NO) are important modulators of the heme-HO system, either through induction of HO-1 or the biological activity of its products. Gene therapy and gene transfer, including site- and organ-specific targeted gene transfer, have become powerful tools for studying the potential role of HO-1/HO-2 in the treatment of various cardiovascular diseases as well as diabetes. HO-1 induction by pharmacological agents or gene transfer of human HO-1 into endothelial cells (ECs) in vitro increases cell-cycle progression and attenuates Ang II, TNF-, and heme-mediated DNA damage; administration in vivo acts to correct blood pressure elevation following Ang II exposure. Moreover, site-specific delivery of HO-1 to renal structures in spontaneously hypertensive rats (SHR), specifically to the medullary thick ascending limb of the loop of Henle (mTALH), has been shown to normalize blood pressure and provide protection to the mTAL against oxidative injury. In other cardiovascular situations, delivery of human HO-1 to hyperglycemic rats significantly lowers superoxide (O(2)(-)) levels and prevents EC damage and sloughing of vascular EC into the circulation. In addition, administration of human HO-1 to rats in advance of ischemia/reperfusion injury considerably reduces tissue damage. The ability to upregulate HO-1 through pharmacological means or through the use of gene therapy may offer therapeutic strategies for cardiovascular disease in the future. This review discusses the implications of HO-1 delivery during the early stages of cardiovascular system injury or in early vascular pathology and suggests that pharmacological agents that regulate HO activity or HO-1 gene delivery itself may become powerful tools for preventing the onset or progression of certain cardiovascular pathologies.  相似文献   

7.
Acute hypoxic pulmonary vasoconstriction (HPV) may be mediated by vasoactive peptides. We studied eight conscious, chronically tracheostomized dogs kept on a standardized dietary sodium intake. Normoxia (40 min) was followed by hypoxia (40 min, breathing 10% oxygen, arterial oxygen pressures 36 +/- 1 Torr) during both control (Con) and losartan experiments (Los; iv infusion of 100 microg. min-1. kg-1 losartan). During hypoxia, minute ventilation (by 0.9 l/min in Con, by 1.3 l/min in Los), cardiac output (by 0.36 l/min in Con, by 0.30 l/min in Los), heart rate (by 11 beats/min in Con, by 30 beats/min in Los), pulmonary artery pressure (by 9 mmHg in both protocols), and pulmonary vascular resistance (by 280 and 254 dyn. s. cm-5 in Con and Los, respectively) increased. Mean arterial pressure and systemic vascular resistance did not change. In Con, PRA decreased from 4.2 +/- 0.7 to 2.5 +/- 0.5 ng ANG I. ml-1. h-1, and plasma ANG II decreased from 11.9 +/- 3.0 to 8.2 +/- 2.1 pg/ml. The renin-angiotensin system is inhibited during acute hypoxia despite sympathetic activation. Under these conditions, ANG II AT1-receptor antagonism does not attenuate HPV.  相似文献   

8.
Heme oxygenase (HO) catalyses the breakdown of heme to iron, carbon monoxide and biliverdin, the latter being further reduced to bilirubin. A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with the production of reactive oxygen species (ROS). The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by iodoacetate (IAA) in primary cultures of cerebellar granule neurons (CGNs). IAA, an inhibitor of the glycolysis pathway, reduces cell survival, increases ROS production and enhances HO-1 expression in CGNs. Furthermore, the induction of HO-1 expression by cobalt protoporphyrin (CoPP) prevented cell death and ROS production induced by IAA, whereas the inhibition of HO activity with tin mesoporphyrin exacerbated the IAA-induced neurotoxicity. The protective effect elicited by CoPP was reproduced by bilirubin addition, suggesting that this molecule may be involved in the protective effect of HO-1 induction in this experimental model.  相似文献   

9.
Heme oxygenase (HO) is the rate-limiting enzyme in the metabolism of heme-releasing bioactive molecules carbon monoxide (CO), biliverdin, and iron, each with beneficial cardiovascular actions. Biliverdin is rapidly reduced to bilirubin, a potent antioxidant, by the enzyme biliverdin reductase, and iron is rapidly sequestered by ferritin in the cell. Several studies have demonstrated that HO-1 induction can attenuate the development of hypertension as well as lower blood pressure in established hypertension in both genetic and experimental models. HO-1 induction can also reduce target organ injury and can be beneficial in cardiovascular diseases, such as heart attack and stroke. Recent studies have also identified a beneficial role for HO-1 in the regulation of body weight and metabolism in diabetes and obesity. Chronic HO-1 induction lowers body weight and corrects hyperglycemia and hyperinsulinemia. Chronic HO-1 induction also modifies the phenotype of adipocytes in obesity from one of large, cytokine producing to smaller, adiponectin producing. Finally, chronic induction of HO-1 increases oxygen consumption, CO(2), and heat production and activity in obese mice. This review will discuss the current understanding of the actions of the HO system to lower blood pressure and body weight and how HO or its metabolites may be ideal candidates for the development of drugs that can both reduce blood pressure and lower body weight.  相似文献   

10.
NAD(P)H oxidases (NOX) and reactive oxygen species (ROS) are involved in vasoconstriction and vascular remodeling during hypertension produced by chronic angiotensin II (ANG II) infusion. These effects are thought to be mediated largely through superoxide anion (O(2)(-)) scavenging of nitric oxide (NO). Little is known about the role of ROS in acute vasoconstrictor responses to agonists. We investigated renal blood flow (RBF) reactivity to ANG II (4 ng), norepinephrine (NE, 20 ng), and alpha(1)-adrenergic agonist phenylephrine (PE, 200 ng) injected into the renal artery (ira) of anesthetized Sprague-Dawley rats. The NOX inhibitor apocynin (1-4 mg.kg(-1).min(-1) ira, 2 min) or the superoxide dismutase mimetic Tempol (1.5-5 mg.kg(-1).min(-1) ira, 2 min) rapidly increased resting RBF by 8 +/- 1% (P < 0.001) or 3 +/- 1% (P < 0.05), respectively. During NO synthase (NOS) inhibition (N(omega)-nitro-l-arginine methyl ester, 25 mg/kg iv), the vasodilation tended to increase (apocynin 13 +/- 4%, Tempol 10 +/- 1%). During control conditions, both ANG II and NE reduced RBF by 24 +/- 4%. Apocynin dose dependently reduced the constriction by up to 44% (P < 0.05). Similarly, Tempol blocked the acute actions of ANG II and NE by up to 48-49% (P < 0.05). In other animals, apocynin (4 mg.kg(-1).min(-1) ira) attenuated vasoconstriction to ANG II, NE, and PE by 46-62% (P < 0.01). During NOS inhibition, apocynin reduced the reactivity to ANG II and NE by 60-72% (P < 0.01), and Tempol reduced it by 58-66% (P < 0.001). We conclude that NOX-derived ROS substantially contribute to basal RBF as well as to signaling of acute renal vasoconstrictor responses to ANG II, NE, and PE in normal rats. These effects are due to O(2)(-) rather than H(2)O(2), occur rapidly, and are independent of scavenging of NO.  相似文献   

11.
Sex differences may play a significant role in determining the risk of hypertension. Bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are involved in the tonic regulation of arterial pressure and participate in the central mechanisms of hypertension. Angiotensin II (ANG II) acting on angiotensin type 1 (AT(1)) receptors in RVLM neurons is implicated in the development of hypertension by activating NADPH oxidase and producing reactive oxygen species (ROS). Therefore, we analyzed RVLM bulbospinal neurons to determine whether there are sex differences in: 1) immunolabeling for AT(1) receptors and the key NADPH oxidase subunit p47 using dual-label immunoelectron microscopy, and 2) the effects of ANG II on ROS production and Ca(2+) currents using, respectively, hydroethidine fluoromicrography and patch-clamping. In tyrosine hydroxylase-positive RVLM neurons, female rats displayed significantly more AT(1) receptor immunoreactivity and less p47 immunoreactivity than male rats (P < 0.05). Although ANG II (100 nM) induced comparable ROS production in dissociated RVLM bulbospinal neurons of female and male rats (P > 0.05), an effect mediated by AT(1) receptors and NADPH oxidase, it triggered significantly larger dihydropyridine-sensitive long-lasting (L-type) Ca(2+) currents in female RVLM neurons (P < 0.05). These observations suggest that an increase in AT(1) receptors in female RVLM neurons is counterbalanced by a reduction in p47 levels, such that ANG II-induced ROS production does not differ between females and males. Since the Ca(2+) current activator Bay K 8644 induced larger Ca(2+) currents in females than in male RVLM neurons, increased ANG II-induced L-type Ca(2+) currents in females may result from sex differences in calcium channel densities or dynamics.  相似文献   

12.
Acute hypertension inhibits proximal tubule (PT) fluid reabsorption. The resultant increase in end proximal flow rate provides the error signal to mediate tubuloglomerular feedback autoregulation of renal blood flow and glomerular filtration rate and suppresses renal renin secretion. To test whether the suppression of the renin-angiotensin system during acute hypertension affects the magnitude of the inhibition of PT fluid and sodium reabsorption, plasma ANG II levels were clamped by infusion of the angiotensin-converting enzyme (ACE) inhibitor captopril (12 microg/min) and ANG II after pretreatment with the bradykinin B(2) receptor blocker HOE-140 (100 microg/kg bolus). Because ACE also degrades bradykinin, HOE-140 was included to block effect of accumulating vasodilatory bradykinins during captopril infusion. HOE-140 increased the sensitivity of arterial blood pressure to ANG II: after captopril infusion without HOE-140, 20 ng x kg(-1) x min(-1) ANG II had no pressor effect, whereas with HOE-140, 20 ng x kg(-1) x min(-1) ANG II increased blood pressure from 104 +/- 4 to 140 +/- 6 mmHg. ANG II infused at 2 ng x kg(-1) x min(-1) had no pressor effect after captopril and HOE-140 infusion ("ANG II clamp"). When blood pressure was acutely increased 50-60 mmHg by arterial constriction without ANG II clamp, urine output and endogenous lithium clearance increased 4.0- and 6.7-fold, respectively. With ANG II clamp, the effects of acute hypertension were reduced 50%: urine output and endogenous lithium clearance increased two- and threefold, respectively. We conclude that HOE-140, an inhibitor of the B(2) receptor, potentiates the sensitivity of arterial pressure to ANG II and that clamping systemic ANG II levels during acute hypertension blunts the magnitude of the pressure diuretic response.  相似文献   

13.
The purpose of this study was to determine the role of endothelin in mediating the renal hemodynamic and arterial pressure changes observed during chronic ANG II-induced hypertension. ANG II (50 ng x kg(-1) x min(-1)) was chronically infused into the jugular vein by miniosmotic pump for 2 wk in male Sprague-Dawley rats with and without endothelin type A (ET(A))-receptor antagonist ABT-627 (5 mg x kg(-1) x day(-1)) pretreatment. Arterial pressure increased in ANG II rats compared with control rats (149 +/- 5 vs. 121 +/- 6 mmHg, P < 0.05, respectively). Renal expression of preproendothelin mRNA was increased by approximately 50% in both the medulla and cortex of ANG II rats. The hypertensive effect of ANG II was completely abolished in rats pretreated with the ET(A)-receptor antagonist (114 +/- 5 mmHg, P < 0.05). Glomerular filtration rate was decreased by 33% in ANG II rats, and this response was attenuated in rats pretreated with ET(A)-receptor antagonist. These data indicate that activation of the renal endothelin system by ANG II may play an important role in mediating chronic renal and hypertensive actions of ANG II.  相似文献   

14.
Plasma levels of IL-6 correlate with high blood pressure under many circumstances, and ANG II has been shown to stimulate IL-6 production from various cell types. This study tested the role of IL-6 in mediating the hypertension caused by high-dose ANG II and a high-salt diet. Male C57BL6 and IL-6 knockout (IL-6 KO) mice were implanted with biotelemetry devices and placed in metabolic cages to measure mean arterial pressure (MAP), heart rate (HR), sodium balance, and urinary albumin excretion. Baseline MAP during the control period averaged 114 +/- 1 and 109 +/- 1 mmHg for wild-type (WT) and IL-6 KO mice, respectively, and did not change significantly when the mice were placed on a high-salt diet (HS; 4% NaCl). ANG II (90 ng/min sc) caused a rapid increase in MAP in both groups, to 141 +/- 9 and 141 +/- 4 in WT and KO mice, respectively, on day 2. MAP plateaued at this level in KO mice (134 +/- 2 mmHg on day 14 of ANG II) but began to increase further in WT mice by day 4, reaching an average of 160 +/- 4 mmHg from days 10 to 14 of ANG II. Urinary albumin excretion on day 4 of ANG II was not different between groups (9.18 +/- 4.34 and 8.53 +/- 2.85 microg/2 days for WT and KO mice). By day 14, albumin excretion was nearly fourfold greater in WT mice, but MAP dropped rapidly back to control levels in both groups when the ANG II was stopped after 14 days. Thus the approximately 30 mmHg greater ANG II hypertension in the WT mice suggests that IL-6 contributes significantly to ANG II-salt hypertension. In addition, the early separation in MAP, the albumin excretion data, and the rapid, post-ANG II recovery of MAP suggest an IL-6-dependent mechanism that is independent of renal injury.  相似文献   

15.
Janus kinase (JAK) 2 is activated by ANG II in vitro and in vivo, and chronic blockade of JAK2 by the JAK2 inhibitor AG-490 has been shown recently to attenuate ANG II hypertension in mice. In this study, AG-490 was infused intravenously in chronically instrumented rats to determine if the blunted hypertension was linked to attenuation of the renal actions of ANG II. In male Sprague-Dawley rats, after a control period, ANG II at 10 ng·kg(-1)·min(-1) was infused intravenously with or without AG-490 at 10 ng·kg(-1)·min(-1) iv for 11 days. ANG II infusion (18 h/day) increased mean arterial pressure from 91 ± 3 to 168 ± 7 mmHg by day 11. That response was attenuated significantly in the ANG II + AG-490 group, with mean arterial pressure increasing only from 92 ± 5 to 127 ± 3 mmHg. ANG II infusion markedly decreased urinary sodium excretion, caused a rapid and sustained decrease in glomerular filtration rate to ~60% of control, and increased renal JAK2 phosphorylation; all these responses were blocked by AG-490. However, chronic AG-490 treatment had no effect on the ability of a separate group of normal rats to maintain normal blood pressure when they were switched rapidly to a low-sodium diet, whereas blood pressure fell dramatically in losartan-treated rats on a low-sodium diet. These data suggest that activation of the JAK/STAT pathway is critical for the development of ANG II-induced hypertension by mediating its effects on renal sodium excretory capability, but the physiological control of blood pressure by ANG II with a low-salt diet does not require JAK2 activation.  相似文献   

16.
Sun JJ  Kim HJ  Seo HG  Lee JH  Yun-Choi HS  Chang KC 《Life sciences》2008,82(11-12):600-607
Overexpression of the gene for heme oxygenase (HO)-1 leads to a reduction in pressor responsiveness to angiotensin II (Ang II) in experimental animals. Using rat vascular smooth muscle cells (VSMCs), we tested whether YS 49 [1-(alpha-naphtylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline] inhibits Ang II-stimulated proliferation of VSMCs via induction of HO-1. YS 49 induced HO-1 protein production in a dose-and time-dependent manner in VSMCs. Treatment with YS 49 significantly and dose-dependently inhibited Ang II-induced VSMC proliferation, ROS production, and phosphorylation of JNK, but not P38 MAP kinase or ERK1/2. The antiproliferation effect of YS 49 was reversed by pretreatment with the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX), or with hemoglobin, a carbon monoxide (CO) scavenger. Similarly, VSMC proliferation, ROS production and phosphorylation of JNK by Ang II were significantly inhibited in VSMCs transfected with the HO-1 gene. Thus, HO-1 and the HO-1 product CO play, at least in part, a crucial role in Ang II-stimulated VSMC proliferation through the regulation of ROS production and JNK phosphorylation. Therefore, YS 49 has potential as a therapeutic strategy for the pathogenesis of Ang II-related vascular diseases such as hypertension and atherosclerosis, via the induction of HO-1 gene activity.  相似文献   

17.
NADPH oxidases (NOX) are the major source of reactive oxygen species (ROS) in the vasculature and contribute to the control of renal perfusion. The role of NOX2 in the regulation of blood pressure and afferent arteriole responsiveness was investigated in NOX2(-/-) and wild-type mice. Arteriole constrictions to ANG II (10(-14)-10(-6) mol/l) were weaker in NOX2(-/-) compared with wild types. N(omega)-nitro-l-arginine methyl ester (l-NAME; 10(-4) mol/l) treatment reduced basal diameters significantly more in NOX2(-/-) (-18%) than in wild types (-6%) and augmented ANG II responses. Adenosine (10(-11)-10(-4) mol/l) constricted arterioles of wild types but not of NOX2(-/-). However, simultaneous inhibition of adenosine type-2 receptors induced vasoconstriction, which was stronger in NOX2(-/-). Adenosine (10(-8) mol/l) enhanced the ANG II response in wild type, but not in NOX2(-/-). This sensitizing effect by adenosine was abolished by apocynin. Chronic ANG II pretreatment (14 days) did not change the ANG II responses in NOX2(-/-), but strengthened the response in wild types. ANG II pretreatment augmented the l-NAME response in NOX2(-/-) (-33%), but not in wild types. Simultaneous application of l-NAME and ANG II caused a stronger constriction in the NOX2(-/-) (-64%) than in wild types (-46%). Basal blood pressures were similar in both genotypes, however, chronic ANG II infusion elevated blood pressure to a greater extent in wild-type (15 +/- 1%) than in NOX2(-/-) (8 +/- 1%) mice. In conclusion, NOX2 plays an important role in the control of afferent arteriole tone and is involved in the contractile responses to ANG II and/or adenosine. NOX2 can be activated by elevated ANG II and may play an important role in ANG II-induced hypertension. NOX2-derived ROS scavenges nitric oxide, causing subsequent nitric oxide-deficiency.  相似文献   

18.
Hypertension alters cerebrovascular regulation and increases the brain's susceptibility to stroke and dementia. We investigated the temporal relationships between the arterial pressure (AP) elevation induced by "slow pressor" angiotensin II (ANG II) infusion, which recapitulates key features of human hypertension, and the resulting cerebrovascular dysfunction. Minipumps delivering saline or ANG II for 14 days were implanted subcutaneously in C57BL/6 mice (n = 5/group). Cerebral blood flow was assessed by laser-Doppler flowmetry in anesthetized mice equipped with a cranial window. With ANG II (600 ng · kg(-1) · min(-1)), AP started to rise after 9 days (P < 0.05 vs. saline), remained elevated at 11-17 days, and returned to baseline at 21 days (P > 0.05). ANG II attenuated the cerebral blood flow increase induced by neural activity (whisker stimulation) or endothelium-dependent vasodilators, an effect observed before the AP elevation (7 days), as well as after the hypertension subsided (21 days). Nonpressor doses of ANG II (200 ng · kg(-1) · min(-1)) induced cerebrovascular dysfunction and oxidative stress without elevating AP (P > 0.05 vs. saline), whereas phenylephrine elevated AP without inducing cerebrovascular effects. ANG II (600 ng · kg(-1) · min(-1)) augmented neocortical reactive oxygen species (ROS) with a time course similar to that of the cerebrovascular dysfunction. Neocortical application of the ROS scavenger manganic(I-II)meso-tetrakis(4-benzoic acid)porphyrin or the NADPH oxidase peptide inhibitor gp91ds-tat attenuated ROS and cerebrovascular dysfunction. We conclude that the alterations in neurovascular regulation induced by slow pressor ANG II develop before hypertension and persist beyond AP normalization but are not permanent. The findings unveil a striking susceptibility of cerebrovascular function to the deleterious effects of ANG II and raise the possibility that cerebrovascular dysregulation precedes the elevation in AP also in patients with ANG II-dependent hypertension.  相似文献   

19.
We investigated the contribution of cytochrome P-450 1B1 (CYP1B1) to renal dysfunction and organ damage associated with ANG II-induced hypertension in rats. ANG II (300 ng·kg(-1)·min(-1)) or vehicle were infused for 2 wk, with daily injections of a selective CYP1B1 inhibitor, 2,4,3',5'-tetramethoxystilbene (TMS; 300 μg/kg ip), or its vehicle. ANG II increased blood pressure and renal CYP1B1 activity that were prevented by TMS. ANG II also increased water intake and urine output, decreased glomerular filtration rate, increased urinary Na(+) and K(+) excretion, and caused proteinuria, all of which were prevented by TMS. ANG II infusion caused hypertrophy, endothelial dysfunction, and increased reactivity of renal and interlobar arteries to vasoconstrictor agents and renal vascular resistance and interstitial fibrosis as indicated by accumulation of α-smooth muscle actin, fibronectin, and collagen, and inflammation as indicated by increased infiltration of CD-3(+) cells; these effects were inhibited by TMS. ANG II infusion also increased production of reactive oxygen species (ROS) and activities of NADPH oxidase, ERK1/2, p38 MAPK, and c-Src that were prevented by TMS. TMS alone had no effect on any of the above parameters. These data suggest that CYP1B1 contributes to the renal pathophysiological changes associated with ANG II-induced hypertension, most likely via increased ROS production and activation of ERK1/2, p38 MAPK, and c-Src and that CYP1B1 could serve as a novel target for treating renal disease associated with hypertension.  相似文献   

20.
The renin-angiotensin system plays a key role in the initiation and maintenance of elevated blood pressure associated with altered intrauterine milieu. The current studies were undertaken to verify whether vascular response to ANG II is increased in adult offspring of low-protein fed dams (LP) compared with control (CTRL) and if so, to examine underlying mechanism(s). ANG II-induced contraction of carotid rings was increased in LP (E(max), the maximum asymptote of the curve, relative to maximal response to KCl 80 mM: 230 +/- 3% LP vs. 201 +/- 2% CTRL, P < 0.05). In both groups, contraction to ANG II was mediated solely by AT1R. Responses to thromboxane A2 analog U-46619 and to KCl 80 mM under step increases in tension were similar between groups. Endothelium depletion enhanced contraction to ANG II in both groups, more so in LP. Blockade of endothelin formation had no effect on response to ANG II, and ANG-(1-7) did not elicit vasomotor response in either group. Superoxide dismutase (SOD) analog Tempol normalized LP without modifying CTRL response to ANG II. Basal levels of superoxide (aortic segments, lucigenin-enhanced chemiluminescence and fluorescent dye hydroethidine) were higher in LP. ANG II further increased superoxide production in LP only, and this was inhibited by coincubation with diphenylene iodonium or apocynin (inhibitor of NADPH oxidase complex). AT1R expression in carotid arteries was increased in LP, whereas SOD expression was unchanged. In conclusion, vasoconstriction to ANG II is exaggerated in this model of developmental programming of hypertension, secondary to enhanced vascular production of superoxide anion by NADPH oxidase with concomitant increase of AT1R expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号