首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Resistance exercise intensity is commonly prescribed as a percent of 1 repetition maximum (1RM). However, the relationship between percent 1RM and the number of repetitions allowed remains poorly studied, especially using free weight exercises. The purpose of this study was to determine the maximal number of repetitions that trained (T) and untrained (UT) men can perform during free weight exercises at various percentages of 1RM. Eight T and 8 UT men were tested for 1RM strength. Then, subjects performed 1 set to failure at 60, 80, and 90% of 1RM in the back squat, bench press, and arm curl in a randomized, balanced design. There was a significant (p < 0.05) intensity x exercise interaction. More repetitions were performed during the back squat than the bench press or arm curl at 60% 1RM for T and UT. At 80 and 90% 1RM, there were significant differences between the back squat and other exercises; however, differences were much less pronounced. No differences in number of repetitions performed at a given exercise intensity were noted between T and UT (except during bench press at 90% 1RM). In conclusion, the number of repetitions performed at a given percent of 1RM is influenced by the amount of muscle mass used during the exercise, as more repetitions can be performed during the back squat than either the bench press or arm curl. Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity.  相似文献   

2.
The purpose of this study was to investigate the influence of different resistance exercise orders on the number of repetitions performed to failure and on the ratings of perceived exertion (RPE) in trained women. Twenty-three women with a minimum of 2 years of resistance training experience volunteered to participate in the study (age, 24.2 +/- 4.5 years; weight, 56.9 +/- 4.7 kg; height, 162.3 +/- 5.9 cm; percent body fat, 18.2 +/- 2.9%; body mass index, 22.2 +/- 2 kg x m(-2)). Data were collected in 2 phases: (a) determination of a 1 repetition maximum (1RM) for the leg-press (LP), bench press (BP), leg extension (LE), seated machine shoulder press (SP), leg curl (LC), and seated machine triceps extension (TE); and (b) execution of 3 sets, with 2-minute rest intervals between sets and exercises, until fatigue using 80% of 1RM in 2 exercise sequences of the exact opposite order--Sequence A: BP, SP, TE, LP, LE, and LC, and Sequence B: LC, LE, LP, TE, SP, and BP. The RPE (Borg CR-10) was accessed immediately after each sequence and analyzed using a Wilcoxon test. A 2-way analysis of variance with repeated measurements, followed by a post hoc Fisher least significant difference test where indicated was used to analyze the number of repetitions per set of each exercise during the 2 sequences. The RPE was not significantly different between the sequences. The mean number of repetitions per set was always less when an exercise was performed later in the exercise sequence. The data indicate that in trained women, performance of both large- and small-muscle group exercises is affected by exercise sequence.  相似文献   

3.
Repetitions to fatigue (RTF) using less than a 1 repetition maximum (1RM) load (RepWt) have been shown to be a good predictor of 1RM strength in men, but such information is scarce in women. The purpose of this study was to evaluate the accuracy of current prediction equations to estimate 1RM bench press performance and to determine whether resistance training changes the capability to predict 1RM from muscular endurance repetitions in young women. Members (n = 103) of a required wellness course were measured for 1RM bench press and RTF using randomly assigned percentages between 60% and 90% of the 1RM (RepWt) before and after 12 weeks of progressive resistance training. The %1RM used to perform RTF remained the same for each individual after training (75.6% +/- 10.3%) as before. One repetition maximum bench press increased significantly after training (28% +/- 21%). Although the change in the group average for RTF (0.6 +/- 6.1) was not significant, the correlation between pretraining and posttraining RTF was moderate (r = 0.66; p < 0.01), and individual differences in percentage change in RTF were substantial (27% +/- 99%). The percentage change in 1RM was not significantly related to initial 1RM (r = -0.05), but it was negatively related to the change in RTF (r = -0.40; p < 0.01). Prediction equations were more accurate in the pretraining and posttraining conditions, in which fewer than 10 RTF were used. Resistance training may alter the relationship between strength and muscle endurance across a wide range of RTF in young women without compromising the accuracy of predicting maximal strength.  相似文献   

4.
The purpose of this investigation was to compare the effects of single-set strength training and 3-set strength training during the early phase of adaptation in 18 untrained male subjects (age, 20-30 years). After initial testing, subjects were randomly assigned to either the 3L-1U group (n = 8), which trained 3 sets in leg exercises and 1 set in upper-body exercises, or the 1L-3U group (n = 10), which trained 1 set in leg exercises and 3 sets in upper-body exercises. Testing was conducted at the beginning and at the end of the study and consisted of 2 maximal isometric tests (knee extension and bench press) and 6 maximal dynamic tests (1 repetition maximum [1RM] tests). Subjects trained 3 days per week for 6 weeks. After warm-up, subjects performed 3 leg exercises and 4 upper-body exercises. In both groups, each set consisted of 7 repetitions (reps) with the load supposed to induce muscular failure after the seventh rep (7RM load). After 6 weeks of training, 1RM performance in all training exercises was significantly increased (10-26%, p < 0.01) in both groups. The relative increase in 1RM load in the 3 leg exercises was significantly greater in the 3L-1U group than in the 1L-3U group (21% vs. 14%, p = 0.01). However, the relative increase in 1RM load in the 3 upper-body exercises was similar in the 3L-1U group (16%) and the 1L-3U group (14%). These results show a superior adaptation to 3-set strength training, compared with 1-set strength training, in leg exercises but not in upper-body exercises during the early phase of adaptation.  相似文献   

5.
This investigation compared ratings of perceived exertion specific to the active muscles used during resistance exercise (RPE-AM) using the 15-category Borg scale during high-intensity (HIP) and low-intensity (LIP) weight lifting. Ten men (23.2 +/- 3.6 years) and 10 women (21.8 +/- 2.7 years) performed 2 trials consisting of seven exercises: bench press (BP), leg press, latissimus dorsi pull down, triceps press, biceps curl, shoulder press, and calf raise. The HIP and LIP protocols were completed in counterbalanced order. During HIP, subjects completed 5 repetitions using 90% of 1 repetition maximum (1RM). RPE-AM was measured after every repetition. During LIP, subjects completed 15 repetitions using 30% of 1RM. RPE-AM was measured after every third repetition. RPE-AMs were greater (p 相似文献   

6.
The purpose of this study was to investigate the effect of pre-exhaustion exercise on lower-extremity muscle activation during a leg press exercise. Pre-exhaustion exercise, a technique frequently used by weight trainers, involves combining a single-joint exercise immediately followed by a related multijoint exercise (e.g., a knee extension exercise followed by a leg press exercise). Seventeen healthy male subjects performed 1 set of a leg press exercise with and without pre-exhaustion exercise, which consisted of 1 set of a knee extension exercise. Both exercises were performed at a load of 10 repetitions maximum (10 RM). Electromyography (EMG) was recorded from the rectus femoris, vastus lateralis, and gluteus maximus muscles simultaneously during the leg press exercise. The number of repetitions of the leg press exercise performed by subjects with and without pre-exhaustion exercise was also documented. The activation of the rectus femoris and the vastus lateralis muscles during the leg press exercise was significantly less when subjects were pre-exhausted (p < 0.05). No significant EMG change was observed for the gluteus maximus muscle. When in a pre-exhausted state, subjects performed significantly (p < 0.001) less repetitions of the leg press exercise. Our findings do not support the popular belief of weight trainers that performing pre-exhaustion exercise is more effective in order to enhance muscle activity compared with regular weight training. Conversely, pre-exhaustion exercise may have disadvantageous effects on performance, such as decreased muscle activity and reduction in strength, during multijoint exercise.  相似文献   

7.
The purpose of this study was to evaluate the contribution of anthropometric dimensions to improving the accuracy of repetitions-to-fatigue (RTF) using an absolute load of 225 lbs to predict 1 repetition maximum (1RM) bench press performance in college football players. Sixty-one players from an NCAA Division II team were evaluated for 1RM bench press performance, RTF using an absolute load of 225 lbs, and measured (5 skinfolds, 2 skeletal length, and 2 muscle circumferences). Anthropometric dimensions (percent fat, lean body mass, and arm cross-sectional areas) were derived at the conclusion of 8 weeks of heavy resistance training during the off-season. None of the anthropometric dimensions made a significant additional contribution to RTF (r = 0.96, SEE = 12.3 lbs) for predicting 1RM. Of the currently available NFL-225 prediction equations found in the literature nonsignificantly underestimated 1RM from RTF by an average of 1.1 lbs (+/-12.7 lbs), whereas 5 other RTF equations significantly overpredicted by 3.5-9.0 lbs (+/-12.2-14.1 lbs). Anthropometric dimensions neither reduced the error associated with prediction of 1RM bench press using the NFL-225 test in college football players nor do they explain why some players are significantly over- or underpredicted when using muscle endurance repetitions.  相似文献   

8.
The purpose of the present investigation was to examine the influence of resistance training with a personal trainer versus unsupervised resistance training on the self-selected intensities used by women during resistance exercise. Forty-six resistance-trained women (age = 26.6 +/- 6.4 years; body mass = 64.2 +/- 10.9 kg) who either trained individually (n = 27; No PT) or with a personal trainer (n = 19; PT) were carefully instructed to select a weight they used in their own resistance training workouts that enabled the completion of 10 repetitions for the chest press (CP), leg press (LP), seated row (SR), and leg extension (LE) exercises. Each participant was subsequently tested for one repetition-maximum (1RM) strength on each exercise, and the self-selected intensity was calculated based on a percent of each 1RM value. For self-selected relative intensity, the PT group selected significantly greater intensities for LP (50% vs. 41%), CP (57.4% vs. 48%), and SR (56% vs. 42%) whereas a trend (p = 0.10) was observed for LE (43% vs. 38%) compared with No PT. Overall, the average self-selected intensity for all exercises was approximately 51.4% in PT group and approximately 42.3% in the No PT group. 1RM values for LP, LE, and SR were greater in the PT than No PT group. Ratings of perceived exertion values were significantly greater in the PT compared with the No PT group for CP, LE, and SR but not LP. These results indicate that resistance training under the supervision of a personal trainer leads to greater initial 1RM strength values, self-selection of greater workout intensities, and greater ratings of perceived exertion values during resistance exercise.  相似文献   

9.
Our purpose was to examine the effect of the chest press and leg press exercises on intraocular pressure (IOP) in physically active, college-aged students. Fifteen healthy males and 15 females performed 3 sets of 10 repetitions of the chest press or leg press with 70% 1 repetition maximum (1RM). IOP was measured using applanation tonometry with a Tono-PenXL prior to exercise, following each set and 5 minutes after the third set. Data were analyzed with a repeated-measures two-way analysis of variance and paired t-tests when necessary. A p < 0.05 was accepted as statistically significant. For the chest press, IOP was reduced 8.0% after the first set, up to 14.5% after the second and third sets, and remained depressed 5 minutes post exercise. For the leg press, IOP was reduced 6.9% after the second set and 13.2% after the third set. IOP began to return to the pre-exercise value during 5 minutes post exercise. Males and females had similar IOP responses to the chest press and leg press exercise. Dynamic resistance exercises induce modest postexercise decreases in IOP.  相似文献   

10.
The purpose of this study was to evaluate the effects of 2 modes of aerobic exercise (continuous or intermittent) on maximum strength (1 repetition maximum, 1RM) and strength endurance (maximum repetitions at 80% of 1RM) for lower- and upper-body exercises to test the acute hypothesis in concurrent training (CT) interference. Eight physically active men (age: 26.9 +/- 4.2 years; body mass: 82.1 +/- 7.5 kg; height: 178.9 +/- 6.0 cm) were submitted to: (a) a graded exercise test to determine V(.-)O2max (39.26 +/- 6.95 ml x kg(-1) x min(-1)) and anaerobic threshold velocity (3.5 mmol x L(-1)) (9.3 +/- 1.27 km x h(-1)); (b) strength tests in a rested state (control); and (c) 4 experimental sessions, at least 7 days apart. The experimental sessions consisted of a 5-kilometer run on a treadmill continuously (90% of the anaerobic threshold velocity) or intermittently (1:1 minute at V(.-)O2max). Ten minutes after the aerobic exercise, either a maximum strength or a strength endurance test was performed (leg press and bench press exercises). The order of aerobic and strength exercises followed a William's square distribution to avoid carryover effects. Results showed that only the intermittent aerobic exercise produced an acute interference effect on leg strength endurance, decreasing significantly (p < 0.05) the number of repetitions from 10.8 +/- 2.5 to 8.1 +/- 2.2. Maximum strength was not affected by the aerobic exercise mode. In conclusion, the acute interference hypothesis in concurrent training seems to occur when both aerobic and strength exercises produce significant peripheral fatigue in the same muscle group.  相似文献   

11.
The purpose of this study was to investigate the relationship between skeletal muscle fiber type composition and the maximum number of repetitions performed during submaximal resistance exercise. Twelve young men performed a maximum repetitions test at 85% of 1 repetition maximum (1RM) in the leg press, which was repeated after 1 week. Seven days after the second 85% 1RM test, they performed a maximum repetitions test at 70% of 1RM in the leg press. This test, at 70% 1RM, was repeated 7 days later. One week before the initiation of the testing sessions, a biopsy sample was obtained from the vastus lateralis muscle and analyzed for fiber type distribution, fiber cross-sectional area, and capillary density (capillaries x mm(2)). A low and nonsignificant relationship was found between the fiber type distribution or percent fiber type area and the number of repetitions performed at either 70% or 85% 1RM. Moreover, the number of repetitions performed at 70% or 85% of 1RM was not related significantly with 1RM strength. In contrast, the number of repetitions performed at 70% 1RM was significantly correlated with the number of capillaries per mm(2) of muscle cross-sectional area (r = 0.70; p = 0.01). These results suggest that fiber type composition is not the major biological variable regulating the number of repetitions performed in submaximal resistance exercise. Rather, it seems that submaximal strength performance depends on muscle capillary density, which is linked with the endurance capacity of the muscle tissue.  相似文献   

12.
This crossover study was conducted to investigate the effects of a 1-set and 3-set strength training program. The subjects were untrained men and women who were randomly signed into 1 of 3 groups: 10 subjects trained during the first 9 weeks (training period 1) with 1 set and 8-12 repetitions per set. After the break (9 weeks), they trained with 3 sets and 8-12 repetitions in training period 2. Twelve subjects started with the 3-set program and continued with the 1-set regime after the break. The control group (n = 7) did not train. The subjects were tested on 1 repetition maximum (1RM) for the biceps curl, leg press (unilateral: left and right), and bench press. Analysis of the data was done in a sampled manner for each strength training program (1-set and 3-set). The 1-set (n = 22) and 3-set (n = 22) programs led to significantly (p < 0.05) improved 1RM performances in every exercise. The relative improvements (%) for the 1RM were significantly higher during the 3-set program for the biceps curl and the bench press compared with the 1-set program. The control group exhibited no changes in any of the tested parameters over the course of this study. The design of this study allowed insight into the effects of different strength training volume without any genetical variations. The same subjects improved their 1RM during the 3-set program by 2.3 kg (biceps curl; corresponding effect size = 0.24), 8.9 kg (leg press right; 0.30), 10.9 kg (leg press left; 0.28), and 2.5 kg (bench press; 0.09) more than during the 1-set program. Depending on the goals of each trainee, these differences between the effects of different strength training volumes indicate that it may be worth spending more time on working out with a 3-set strength training regime.  相似文献   

13.
The purpose of this study was to compare single and multiple sets of weight training for strength gains in recreationally trained individuals. Sixteen men (age = 21 +/- 2.0) were randomly assigned to 1 set (S-1; n = 8) or 3 set (S-3; n = 8) groups and trained 3 days per week for 12 weeks. One repetition maximum (1RM) was recorded for bench press and leg press at pre-, mid-, and posttest. Subjects trained according to daily undulating periodization (DUP), involving the bench press and leg press exercises between 4RM and 8RM. Training intensity was equated for both groups. Analysis of variance with repeated measures revealed statistically significant differences favoring S-3 in the leg press (p < 0.05, effect size [ES] = 6.5) and differences approaching significance in the bench press (p = 0.07, ES = 2.3). The results demonstrate that for recreationally trained individuals using DUP training, 3 sets of training are superior to 1 set for eliciting maximal strength gains.  相似文献   

14.
The purpose of the present investigation was to determine if significant differences exist among 3 different periodization programs in eliciting changes in strength. Twenty-eight recreationally trained college-aged volunteers (mean +/- SD; 22.29 +/- 3.98) of both genders were tested for bench press, leg press, body fat percentage, chest circumference, and thigh circumference during initial testing. After initial testing, subjects were randomly assigned to 1 of 3 training groups: (a) linear periodization (n = 9), (b) daily undulating periodization (n = 10), or (c) weekly undulating periodization (n = 9). The training regimen for each group consisted of a 9-week, 3-day-per-week program. Training loads were assigned as heavy (90%, 4 repetition maximum [4RM]), medium (85%, 6RM), or light (80%, 8RM) for bench press and leg press exercises. Subjects were familiarized with the CR-10 rated perceived exertion scale and instructed to achieve an 8 or 9 on the final repetition of each set for all other exercises. Subjects were then retested after 4 weeks of training. Training loads were then adjusted according to the new 1RM. Subjects were then retested after 5 more weeks of exercise. For all subjects, significant (p < 0.05) increases in bench press and leg press strength were demonstrated at all time points (T1-T3). No significant differences (p > 0.05) were observed between groups for bench press, leg press, body fat percentage, chest circumference, or thigh circumference at all time points. These results indicate that no separation based on periodization model is seen in early-phase training.  相似文献   

15.
Interaction between concurrent strength and endurance training   总被引:1,自引:0,他引:1  
To assess the effects of concurrent strength (S) and endurance (E) training on S and E development, one group (4 young men and 4 young women) trained one leg for S and the other leg for S and E (S+E). A second group (4 men, 4 women) trained one leg for E and the other leg for E and S (E+S). E training consisted of five 3-min bouts on a cycle ergometer at a power output corresponding to that requiring 90-100% of oxygen uptake during maximal exercise (VO2 max). S training consisted of six sets of 15-20 repetitions with the heaviest possible weight on a leg press (combined hip and knee extension) weight machine. Training was done 3 days/wk for 22 wk. Needle biopsy samples from vastus lateralis were taken before and after training and were examined for histochemical, biochemical, and ultrastructural adaptations. The nominal S and E training programs were "hybrids", having more similarities as training stimuli than differences; thus S made increases (P less than 0.05) similar to those of S+E in E-related measures of VO2max (S, S+E: 8%, 8%), repetitions with the pretraining maximal single leg press lift [1 repetition maximum (RM)] (27%, 24%), and percent of slow-twitch fibers (15%, 8%); and S made significant, although smaller, increases in repetitions with 80% 1 RM (81%, 152%) and citrate synthase (CS) activity (22%, 51%). Similarly, E increased knee extensor area [computed tomography (CT) scans] as much as E+S (14%, 21%) and made significant, although smaller, increases in leg press 1 RM (20%, 34%) and thigh girth (3.4%, 4.8%). When a presumably stronger stimulus for an adaptation was added to a weaker one, some additive effects occurred (i.e., increases in 1 RM and thigh girth that were greater in E+S than E; increases in CS activity and repetitions with 80% 1 RM that were greater in S+E than S). When a weaker, although effective, stimulus was added to a stronger one, addition generally did not occur. Concurrent S and E training did not interfere with S or E development in comparison to S or E training alone.  相似文献   

16.
This study investigated the reliability of the session rating of perceived exertion (RPE) scale to quantify exercise intensity during high-intensity (H), moderate-intensity (M), and low-intensity (L) resistance training. Nine men (24.7 +/- 3.8 years) and 10 women (22.1 +/- 2.6 years) performed each intensity twice. Each protocol consisted of 5 exercises: back squat, bench press, overhead press, biceps curl, and triceps pushdown. The H consisted of 1 set of 4-5 repetitions at 90% of the subject's 1 repetition maximum (1RM). The M consisted of 1 set of 10 repetitions at 70% 1RM, and the L consisted of 1 set of 15 repetitions at 50% 1RM. RPE was measured following the completion of each set and 30 minutes postexercise (session RPE). Session RPE was higher for the H than M and L exercise bouts (p < or = 0.05). Performing fewer repetitions at a higher intensity was perceived to be more difficult than performing more repetitions at a lower intensity. The intraclass correlation coefficient for the session RPE was 0.88. The session RPE is a reliable method to quantify various intensities of resistance training.  相似文献   

17.
The purpose of this study was to determine whether a relationship exists between 1-repetition maximum (1RM) performed on hammer strength (HS) machines compared to free weights (FWs) and also to develop regression equations that can accurately predict 1RM when switching from exercise modality to another. Thirty-one trained male subjects performed 1-RM lifts (1RM's) on 3 HS externally loaded machines and 3 comparable FW exercises. Subjects performed 2 1RM tests during each laboratory session, with at least 48-72 hours of recovery between each. One repetition maximum data were used to (a) determine the relationship between 1RM performed on HS vs. FW and (b) to develop regression equations that can accurately predict 1RM's when switching from 1 exercise modality to another. Statistics revealed significant differences (p < 0.05) between 1RM's performed on the HS equipment as compared to its corresponding (FW) exercise. For all exercises, 1RM's were significantly greater on the HS equipment. Regression equations were developed for all exercises, except when predicting the HS shoulder press and the HS preacher curls from their free weight counterparts, where no variables existed that could significantly predict their respective 1RM's. As 1 RMs were significantly greater when using the HS equipment compared to when using FWs, those transitioning from HS exercise to FW exercise should exercise caution.  相似文献   

18.
The acute response of free salivary testosterone (T) and cortisol (C) concentrations to four resistance exercise (RE) protocols in 23 elite men rugby players was investigated. We hypothesized that hormonal responses would differ among individuals after four distinct RE protocols: four sets of 10 repetitions (reps) at 70% of 1 repetition maximum (1RM) with 2 minutes' rest between sets (4 x 10-70%); three sets of five reps at 85% 1RM with 3 minutes' rest (3 x 5-85%); five sets of 15 reps at 55% 1RM with 1 minute's rest (5 x 15-55%); and three sets of five reps at 40% 1RM with 3 minutes' rest (3 x 5-40%). Each athlete completed each of the four RE protocols in a random order on separate days. T and C concentrations were measured before exercise (PRE), immediately after exercise (POST), and 30 minutes post exercise (30 POST). Each protocol consisted of four exercises: bench press, leg press, seated row, and squats. Pooled T data did not change as a result of RE, whereas C declined significantly. Individual athletes differed in their T response to each of the protocols, a difference that was masked when examining the pooled group data. When individual data were retrospectively tabulated according to the protocol in which each athlete showed the highest T response, a significant protocol-dependent T increase for all individuals was revealed. Therefore, RE induced significant individual, protocol-dependent hormonal changes lasting up to 30 minutes after exercise. These individual responses may have important ramifications for modulating adaptation to RE and could explain the variability often observed in studies of hormonal response to RE.  相似文献   

19.
This study evaluated the influence of cadence on the Young Men's Christian Association (YMCA) bench press test for predicting 1 repetition maximum (1RM) bench press test performance. Fifty-eight medical students (37 men, 21 women) were evaluated for anthropometric variables (age, height, weight, fat-free mass, and percent fat), 1RM bench press, and 2 cadence tests of muscular endurance performed at cadences of 30 and 60 repetitions per minute (reps.min(-1)). Each test was performed on a separate day, with 5 days rest in between. There was no significant difference among the number of repetitions performed at each cadence by men, whereas women performed significantly more repetitions at the slower cadence. Repetitions at either cadence were good predictors of 1RM bench press in both genders (men: 30 reps.min(-1), r(2) = 0.757, standard error of the estimate [SEE] = 8.0 kg; 60 reps.min(-1), r(2) = 0.884, SEE = 8.2 kg; women: 30 reps.min(-1), r(2) = 0.754, SEE = 3.1 kg; 60 reps.min(-1), r(2) = 0.816, SEE = 2.7 kg). The addition of anthropometric dimensions to the regression equations did not improve predictive accuracy. Using both fast and slow cadences, the YMCA bench press test can provide a valid estimation of 1RM performance in untrained young men and women.  相似文献   

20.
The objective of this study was to verify the effect of 2 periodized resistance training (RT) methods on the evolution of 1-repetition maximum (1RM) and 8RM loads. Twenty resistance trained men were randomly assigned to 2 training groups: linear periodization (LP) group and daily undulating periodization (DUP) group. The subjects were tested at baseline and after 12 weeks for 1RM and 8RM loads in leg press (LEG) and bench press (BP) exercises. The training program was performed in alternated sessions for upper (session A: chest, shoulder and triceps) and lower body (session B: leg, back and biceps). The 12-week periodized training was applied only in the tested exercises, and in the other exercises, 3 sets of 6-8RM were performed. Both groups exhibited significant increases in 1RM loads on LEG and BP, but no statistically significant difference between groups was observed. The same occurred in 8RM loads on LEG and BP. However, DUP group presented superior effect size (ES) in 1RM and 8RM loads for LEG and BP exercises when compared to the LP group. In conclusion, periodized RT can be an efficient method for increasing the strength and muscular endurance in trained individuals. Although there was no statistically significant difference between periodization models, DUP promoted superior ES gains in muscular maximal and submaximal strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号