首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
The predicted amino acid sequence of rbsA, a gene from the high affinity ribose transport operon (rbs) of Escherichia coli K12, is homologous to the products of hisP, malK, and pstB, components of the histidine, maltose, and phosphate high affinity transport operons. The recent finding by Hobson et al. (Hobson, A. C., Weatherwax, R., and Ames, G.F.-L. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 7333-7337) that the hisP and malK products bind ATP suggests that these four gene products may be involved in coupling the energy from ATP to drive the active transport in their respective transport systems. Each gene product contains a sequence of glycine and basic residues which are characteristic of an ATP-binding site (Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982) EMBO J. 1, 945-951). Interestingly the N- and C-terminal halves of rbsA are also homologous, suggesting that a primordial gene duplication and subsequent fusion of the products occurred.  相似文献   

3.
The thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius grows at 60 degrees C and pH 2-3. The organism can utilize maltose and maltodextrins as energy source that are taken up by an ATP-binding cassette (ABC) import system. Genes encoding a maltose binding protein, MalE, and two membrane-integral subunits, MalF and MalG, are clustered on the chromosome but a malK gene translating into a cognate ATPase subunit is lacking. Here we report the cloning of malK from genomic DNA by using the msiK gene of Streptomyces lividans as a probe. Purified MalK exhibited a spontaneous ATPase activity with a Vmax of 0.13 micromol Pi/min/mg and a Km of 330 microM that was optimal at the growth temperature of the organism. Coexpression of malK, malF and malG in Escherichia coli resulted in the formation of a complex that could be coeluted from an affinity matrix after solubilization of membranes with dodecylmaltoside. Proteoliposomes prepared from the MalFGK complex and preformed phospholipid vesicles of A. acidocaldarius displayed a low intrinsic ATPase activity that was stimulated sevenfold by maltose-loaded MalE, thereby indicating coupling of ATP hydrolysis to substrate translocation. These results provide evidence for MalK being the physiological ATPase subunit of the A. acidocaldarius maltose transporter. Moreover, to our knowledge, this is the first report on the functional reconstitution of an ABC transport system from a thermophilic microorganism.  相似文献   

4.
M Mourez  M Hofnung    E Dassa 《The EMBO journal》1997,16(11):3066-3077
The cytoplasmic membrane proteins of bacterial binding protein-dependent transporters belong to the superfamily of ABC transporters. The hydrophobic proteins display a conserved, at least 20 amino acid EAA---G---------I-LP region exposed in the cytosol, the EAA region. We mutagenized the EAA regions of MalF and MalG proteins of the Escherichia coli maltose transport system. Substitutions at the same positions in MalF and MalG have different phenotypes, indicating that EAA regions do not act symmetrically. Mutations in malG or malF that slightly affect or do not affect transport, determine a completely defective phenotype when present together. This suggests that EAA regions of MalF and MalG may interact during transport. Maltose-negative mutants fall into two categories with respect to the cellular localization of the MalK ATPase: in the first, MalK is membrane-bound, as in wild-type strains, while in the second, it is cytosolic, as in strains deleted in the malF and malG genes. From maltose-negative mutants of the two categories, we isolated suppressor mutations within malK that restore transport. They map mainly in the putative helical domain of MalK, suggesting that EAA regions may constitute a recognition site for the ABC ATPase helical domain.  相似文献   

5.
Sequence of the malK gene in E.coli K12.   总被引:36,自引:1,他引:35       下载免费PDF全文
E Gilson  H Nikaido    M Hofnung 《Nucleic acids research》1982,10(22):7449-7458
We present the sequence of gene malK which encodes a component of the system for maltose transport in E.coli K12. We also determined the position of deletion (S50) which fuses malK to the following gene lamB; the malK-lamB protein hybrid contains all of the malK protein. The mRNA corresponding to the last two thirds of gene malK could form stable stem and loop structures. The malK protein, as deduced from the gene sequence, would include 370 residues and correspond to a molecular weight of 40700. The sequence as well as sequence comparisons with the ndh protein of E.coli are discussed in terms of the location and function of the malK protein.  相似文献   

6.
7.
Bacterial periplasmic binding protein-dependent transport systems require the function of a specific substrate-binding protein, located in the periplasm, and several membrane-bound components. We present evidence for a nucleotide-binding site on one of the membrane components from each of three independent transport systems, the hisP, malK and oppD proteins of the histidine, maltose and oligopeptide permeases, respectively. The amino acid sequence of the oppD protein has been determined and this protein is shown to share extensive homology with the hisP and malK proteins. Three lines of evidence lead us to propose the existence of a nucleotide-binding site on each of these proteins. A consensus nucleotide-binding sequence can be identified in the same relative position in each of the three proteins. The oppD protein binds to a Cibacron Blue affinity column and can be eluted by ATP but not by CTP or NADH. The oppD protein is labelled specifically by the nucleotide affinity analogue 5'-p-fluorosulphonylbenzoyladenosine. The identification of a nucleotide-binding site provides strong evidence that transport by periplasmic binding protein-dependent systems is energized directly by the hydrolysis of ATP or a closely related nucleotide. The hisP, malK and oppD proteins are thus responsible for energy-coupling to their respective transport systems.  相似文献   

8.
Phenotypic characterization and mapping of more than 50 Mal(-) mutations located in the malB region lead one to divide the site for Mal(-)lambdas mutations (formerly called gene malB) in that region, into two adjacent genetic segments malJ and malK. malJ and malK are both involved in maltose permeation. It is suggested that (i) malK and lamB, the only known gene specifically involved in phage lambda adsorption (20), constitute an operon of polarity malK lamB. (ii) malJ and malK correspond to two different genes, and (iii) a promoter for the malK lamB operon is located between malJ and malK. Since lambda receptors and maltose permease are inducible by maltose and absent in malT mutants, it is likely that the expression of the malK lamB operon is controlled by the product of gene malT, the positive regulatory gene of the maltose system.  相似文献   

9.
Nucleotide sequence of the regulatory region of malB operons in E. coli   总被引:2,自引:0,他引:2  
The nucleotide sequence of a cloned section of the Escherichia coli chromosome containing the promoter regions of the malB divergent operons was determined. The region of the proximal gene, malE of the malEFG operon, was identified on the basis of the known amino acid sequence of the precursor molecule of maltose-binding protein. The region of malK, the proximal gene of the malKlamB operon, was deduced from the observation that a cloned segment contains an amino-terminal portion of the malK gene. The non-coding region between malE and malK is 299 base pairs long and contains two long GC clusters. Another feature of this region that may be related to the regulation of gene expression is the presence of two palindromic structures between the GC clusters. The DNA regions binding to cyclic AMP binding protein were determined by a method using polyacrylamide gel electrophoresis. The sites are thought to be located close to GC clusters.  相似文献   

10.
The maltose ATP-binding cassette (ABC) transporter of Salmonella typhimurium is composed of a membrane-associated complex (MalFGK(2)) and a periplasmic substrate binding protein. To further elucidate protein-protein interactions between the subunits, we have studied the dissociation and reassembly of the MalFGK(2) complex at the level of purified components in proteoliposomes. First, we optimized the yield in purified complex protein by taking advantage of a newly constructed expression plasmid that carries the malK, malF and malG genes in tandem orientation. Incorporated in proteoliposomes, the complex exhibited maltose binding protein/maltose-dependent ATPase activity with a V(max) of 1.25 micromol P(i)/min/mg and a K(m) of 0.1 mM. ATPase activity was sensitive to vanadate and enzyme IIA(Glc), a component of the enterobacterial glucose transport system. The proteoliposomes displayed maltose transport activity with an initial rate of 61 nmol/min/mg. Treatment of proteoliposomes with 6.6 M urea resulted in the release of medium-exposed MalK subunits concomitant with the complete loss of ATPase activity. By adding increasing amounts of purified MalK to urea-treated proteoliposomes, about 50% of vanadate-sensitive ATPase activity relative to the control could be recovered. Furthermore, the phenotype of MalKQ140K that exhibits ATPase activity in solution but not when associated with MalFG was confirmed by reassembly with MalK-depleted proteoliposomes.  相似文献   

11.
The gene xylE, coding for xylose-proton symport in Escherichia coli, was cloned and its DNA sequence determined. The cloning strategy utilized lambda placMu insertions and exploited the proximity of xylE to malB. A 2.8-kilobase HincII fragment of cloned DNA restored [14C]xylose transport and xylose-proton symport activities to a xylose transport-negative strain. The xylE gene was identified as a 1473-base pair open reading frame, located 373 base pairs downstream of malG, encoding a hydrophobic protein of Mr 53,607. The amino acid sequence of XylE bore little resemblance to the lactose-proton LacY symporter or melibiose-sodium MelB symporter, but a high degree of homology was found with the arabinose-proton AraE symporter of E. coli and glucose transport proteins of mammals. Structural analyses and comparisons suggest that 12 membrane-spanning segments may occur in the XylE protein.  相似文献   

12.
We report the presence of Mlc in a thermophilic bacterium. Mlc is known as a global regulator of sugar metabolism in gram-negative enteric bacteria that is controlled by sequestration to a glucose-transporting EII(Glc) of the phosphotransferase system (PTS). Since thermophilic bacteria do not possess PTS, Mlc in Thermus thermophilus must be differently controlled. DNA sequence alignments between Mlc from T. thermophilus (Mlc(Tth)) and Mlc from E. coli (Mlc(Eco)) revealed that Mlc(Tth) conserved five residues of the glucose-binding motif of glucokinases. Here we show that Mlc(Tth) is not a glucokinase but is indeed able to bind glucose (K(D) = 20 microM), unlike Mlc(Eco). We found that mlc of T. thermophilus is the first gene within an operon encoding an ABC transporter for glucose and mannose, including a glucose/mannose-binding protein and two permeases. malK1, encoding the cognate ATP-hydrolyzing subunit, is located elsewhere on the chromosome. The system transports glucose at 70 degrees C with a K(m) of 0.15 microM and a V(max) of 4.22 nmol per min per ml at an optical density (OD) of 1. Mlc(Tth) negatively regulates itself and the entire glucose/mannose ABC transport system operon but not malK1, with glucose acting as an inducer. MalK1 is shared with the ABC transporter for trehalose, maltose, sucrose, and palatinose (TMSP). Mutants lacking malK1 do not transport either glucose or maltose. The TMSP transporter is also able to transport glucose with a K(m) of 1.4 microM and a V(max) of 7.6 nmol per min per ml at an OD of 1, but it does not transport mannose.  相似文献   

13.
Active transport of maltose in Escherichia coli requires the presence of both maltose-binding protein (MBP) in the periplasm and a complex of MalF, MalG, and MalK proteins (FGK2) located in the cytoplasmic membrane. Earlier, mutants in malF or malG were isolated that are able to grow on maltose in the complete absence of MBP. When the wild-type malE+ allele, coding for MBP, was introduced into these MBP-independent mutants, they frequently lost their ability to grow on maltose. Furthermore, starting from these Mal- strains, Mal+ secondary mutants that contained suppressor mutations in malE were isolated. In this study, we examined the interaction of wild-type and mutant MBPs with wild-type and mutant FGK2 complexes by using right-side-out membrane vesicles. The vesicles from a MBP-independent mutant (malG511) transported maltose in the absence of MBP, with Km and Vmax values similar to those found in intact cells. However, addition of wild-type MBP to these mutant vesicles produced unexpected responses. Although malE+ malG511 cells could not utilize maltose, wild-type MBP at low concentrations stimulated the maltose uptake by malG511 vesicles. At higher concentrations of the wild-type MBP and maltose, however, maltose transport into malG511 vesicles became severely inhibited. This behaviour of the vesicles was also reflected in the phenotype of malE+ malG511 cells, which were found to be capable of transporting maltose from a low external concentration (1 microM), but apparently not from millimolar concentrations present in maltose minimal medium. We found that the mutant FGK2 complex, containing MalG511, had a much higher apparent affinity towards the wild-type MBP than did the wild-type FGK2 complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We have isolated a hybrid gene, composed of the first 455 nucleotides of hisP and nucleotides 275-1107 of malK, the genes coding for the nucleotide-binding components of the high-affinity transport systems for histidine and maltose in Salmonella typhimurium, respectively. The fusion had occurred by recombination within 11 homologous base pairs located between the two DNA fragments. In the chimeric protein peptidic motifs A and B, proposed to be part of the nucleotide-binding fold, originate from HisP and MalK, respectively. Plasmid pES42-39, harbouring the hybrid gene, was shown to complement only a malK mutation but failed to complement a hisP deletion mutation. The chimeric protein was identified by immunoblotting as a protein with an apparent molecular mass of 49kDa. Removal of the C-terminal 77 amino acid residues from the chimeric protein resulted in the loss of function in transport. In contrast, 51 amino acid residues could be removed from the C-terminus of wild-type MalK without any effect. Upon overproduction the chimeric protein, as wild-type MalK, inhibited expression of the malB regulon. However, both truncated proteins, when overproduced, did not exhibit this activity. Based on these results, a tentative model of the functional domains of MalK is presented.  相似文献   

15.
We isolated mutants of Escherichia coli in which the maltose-binding protein (MBP) is no longer required for growth on maltose as the sole source of carbon and energy. These mutants were selected as Mal+ revertants of a strain which carries a deletion of the MBP structural gene, malE. In one class of these mutants, maltose is transported into the cell independently of MBP by the remaining components of the maltose system. The mutations in these strains map in either malF or malG. These genes code for two of the cytoplasmic membrane components of the maltose transport system. In some of the mutants, MBP actually inhibits maltose transport. We demonstrate that these mutants still transport maltose actively and in a stereospecific manner. These results suggest that the malF and malG mutations result in exposure of a substrate recognition site that is usually available only to substrates bound to MBP.  相似文献   

16.
We have studied the transport of trehalose and maltose in the thernophilic bacterium Thermus thermophilus HB27, which grows optimally in the range of 70 to 75 degrees C. The K(m) values at 70 degrees C were 109 nM for trehalose and 114 nM for maltose; also, a high K(m) (424 nM) was found for the uptake of sucrose. Competition studies showed that a single transporter recognizes trehalose, maltose, and sucrose, while d-galactose, d-fucose, l-rhamnose, l-arabinose, and d-mannose were not competitive inhibitors. In the recently published genome of T. thermophilus HB27, two gene clusters designated malEFG1 (TTC1627 to -1629) and malEFG2 (TTC1288 to -1286) and two monocistronic genes designated malK1 (TTC0211) and malK2 (TTC0611) are annotated as trehalose/maltose and maltose/maltodextrin transport systems, respectively. To find out whether any of these systems is responsible for the transport of trehalose, the malE1 and malE2 genes, lacking the sequence encoding the signal peptides, were expressed in Escherichia coli. The binding activity of pure recombinant proteins was analyzed by equilibrium dialysis. MalE1 was able to bind maltose, trehalose, and sucrose but not glucose or maltotetraose (K(d) values of 103, 67, and 401 nM, respectively). Mutants with disruptions in either malF1 or malK1 were unable to grow on maltose, trehalose, sucrose, or palatinose, whereas mutants with disruption in malK2 or malF2 showed no growth defect on any of these sugars. Therefore, malEFG1 encodes the binding protein and the two transmembrane subunits of the trehalose/maltose/sucrose/palatinose ABC transporter, and malK1 encodes the ATP-binding subunit of this transporter. Despite the presence of an efficient transporter for trehalose, this compound was not used by HB27 for osmoprotection. MalE1 and MalE2 exhibited extremely high thermal stability: melting temperatures of 90 degrees C for MalE1 and 105 degrees C for MalE2 in the presence of 2.3 M guanidinium chloride. The latter protein did not bind any of the sugars examined and is not implicated in a maltose/maltodextrin transport system. This work demonstrates that malEFG1 and malK1 constitute the high-affinity ABC transport system of T. thermophilus HB27 for trehalose, maltose, sucrose, and palatinose.  相似文献   

17.
18.
A cluster of Thermotoga neapolitana genes participating in starch degradation includes the malG gene of sugar transport protein and the aglB gene of cyclomaltodextrinase. The start and stop codons of these genes share a common overlapping sequence, aTGAtg. Here, we compared properties of expression products of three different constructs with aglB from T. neapolitana. The first expression vector contained the aglB gene linked to an upstream 90-bp 3'-terminal region of the malG gene with the stop codon overlapping with the start codon of aglB. The second construct included the isolated coding sequence of aglB with two tandem potential start codons. The expression product of this construct in Escherichia coli had two tandem Met residues at its N terminus and was characterized by low thermostability and high tendency to aggregate. In contrast, co-expression of aglB and the 3'-terminal region of malG (the first construct) resulted in AglB with only one N-terminal Met residue and a much higher specific activity of cyclomaltodextrinase. Moreover, the enzyme expressed by such a construct was more thermostable and less prone to aggregation. The third construct was the same as the second one except that it contained only one ATG start codon. The product of its expression had kinetic and other properties similar to those of the enzyme with only one N-terminal Met residue.  相似文献   

19.
E Dassa  M Hofnung 《The EMBO journal》1985,4(9):2287-2293
The MalG protein is needed for the transport of maltose in Escherichia coli K12. We present the sequence of gene malG. The deduced amino acid sequence corresponds to a protein of 296 amino acid residues (mol. wt. = 32 188 daltons). This protein is largely hydrophobic (hydrophobic index = 0.83) and is thus presumably an integral inner membrane protein which could span the membrane through six hydrophobic segments. We provide direct evidence from fusion proteins for the translation frame and we also identified the in vitro made MalG protein. We have found a sequence which is highly conserved between MalG and MalF, the other integral inner membrane protein of the maltose transport system. This conserved sequence is also present in all known integral membrane proteins of binding protein-dependent transport systems, always at the same distance (approximately 90 residues) from their COOH terminus. We discuss briefly this finding.  相似文献   

20.
The ATP-binding-cassette (ABC) protein LacK of Agro-bacterium radiobacter displays high sequence similarity to the MalK subunit of the Salmonella typhimurium maltose-transport system (MalFGK2). We have used LacK as a tool to identify sites of interaction of MalK with the membrane-integral components MalF and MalG. Small amounts of LacK, resulting from the expression of the plasmid-borne lacK gene, proved to be sufficient for partial restoration of growth of a malK strain of S. typhimurium on maltose. LacK failed to substitute for MalK in regulating the expression of maltose-inducible genes but the hybrid complex MalFGLacK2 was sensitive to inducer exclusion. The lacK gene also complemented a ugpC mutant of Escherichia coli to growth on sn -glycerol-3-phosphate as the phosphate source. Partially purified LacK exhibited a spontaneous ATPase activity comparable to that of MalK. A MalK'–'LacK chimeric protein was isolated (by in vivo recombination) in which the N-terminal 140 amino acids of MalK are fused to residues 141–363 of LacK. The protein substituted for MalK in maltose transport considerably better than LacK. Furthermore, random mutagenesis of the plasmid-borne lacK gene yielded three clones that were superior to wild-type lacK in complementing a malK mutation. Single mutations (V114M or L123F) substantially improved the growth of a malK strain on maltose, whereas a double mutation (L123F, S295N) resulted in growth and transport rates that were indistinguishable from those obtained with MalK. In contrast, the introduction of the single change S295N into LacK had no effect but combination with the V114M mutation led to a further twofold increase in transport activity. These results indicate that a putative helical domain in MalK, encompassing residues 89–140, is crucial for a functional, high-affinity interaction with MalF and MalG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号