首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fine structure of the parathyroid of the macaque is described, and is correlated with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron micrographs. The chief cells contain within their cytoplasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic reticulum of the ergastoplasmic or granular type. Oxyphil cells are characterized by juxtanuclear bodies and by numerous mitochondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described.  相似文献   

2.
Parathyrin of Stannius corpuscles (PCS), glands which are restricted to Holostei and Teleostei, is closely related to mammalian parathyrin (PTH) secreted by the parathyroids [( 6] to [9]). In unstimulated and stimulated CS we have shown the same structure and cellular types that are described in mammalian parathyroids. We observed three types of cells; the two sorts of cells already described [14] present such a difference of density (Fig. 1) that type I may be compared to chief dark cells and type II to chief light cells. The difference between these two forms was particularly marked in activated CS; a similar observation has been reported concerning PT [15]. Furthermore, we have detected a third type of cell present either singly in unactivated CS or in small groups between chief cells in activated CS. They showed all the characteristics of oxyphil cells [17]; they present an extremely dense cytoplasm with numerous mitochondria and a typical stellate form with cytoplasmic processes extending between chief cells (Figs. 2, 3). In CS of untreated eels, we have shown by means of indirect immunocytology (using an immunserum raised against the active fragment 1-34 bPTH) that the immunostained reaction product was limited to dilated cisternae and ribosomes of the rough endoplasmic reticulum and to most of the granules in all the chief cells (Figs. 4, 5). No immunoreaction was observed in Golgi area. Oxyphil cells did not present an immune localization of PCS. CS are structurally and cytologically similar to mammalian PT; furthermore their chief cells synthesize, stock and secrete a substance immunologically similar to mammalian PTH; the exact function of oxyphil cells has to be demonstrated.  相似文献   

3.
4.
5.
The normal parathyroids of six humans and a Virginia deer were studied by light and electron microscopy. The parenchyma of the deer parathyroid is composed of uniform chief cells, which contained 100 to 400 mµ electron-opaque, membrane-limited granules, presumed to be secretory granules, in addition to the usual cytoplasmic organelles. Desmosomes are present between adjacent cells, and rare cilia are observed protruding from the chief cells into the intercellular space. The human parathyroids contain chief cells in two phases—active and inactive—as well as oxyphil cells. Active chief cells have a large Golgi apparatus, sparse glycogen, numerous secretory granules, and rare cilia. Inactive chief cells contain a small Golgi apparatus, abundant glycogen, and few secretory granules. Both forms have the usual cytoplasmic organelles and, between adjacent cells, desmosomes. Oxyphil cell cytoplasm is composed of tightly packed mitochondria and glycogen granules, with rare secretory granules. Cells with cytoplasmic characteristics intermediate between chief and oxyphil cells, possibly representing transitional cells, have been observed. Secretory granules of both man and deer are composed of 100 to 200 A particles and short rods, and the granules develop from prosecretory granules in the Golgi region of the cell. The human secretory granules are smaller and more variable in shape than those of the deer. The granules are iron and chrome alum hematoxylin-positive, argyrophilic, and aldehyde fuchsin-positive, permitting light microscopic identification. They are also found in the capillary endothelial cells of the parathyroid and in its surrounding connective tissue. The secretory granules of the parathyroid cells can thus be followed from their formation in the Golgi apparatus almost to their extrusion into the blood stream.  相似文献   

6.
Parathyroid glands express the 25-hydroxyvitamin D(3) 1α-hydroxylase (1αOHase). 1,25-dihydroxyvitamin D(3) (calcitriol) synthesized by extrarenal tissues generally does not enter the circulation, but plays an autocrine/paracrine role specific to the cell type, and is regulated by the needs of that particular cell. While the role of calcitriol produced in the parathyroid glands presumably is to suppress PTH and cell growth, its regulation in this cell type has not been defined. In the present study, we found that regulation of the human parathyroid 1αOHase differs from the renal enzyme in that it is induced by FGF-23 and extracellular calcium. Hyperplastic parathyroid glands from patients with chronic kidney failure normally display a heterogeneous cellularity. We found that the 1αOHase is expressed at much higher levels in oxyphil cells than in chief cells in these patients. Recent findings indicate that oxyphil cell content is increased by treatment with calcium receptor activators (calcimimetics). Here, we demonstrate that the calcimimetic cinacalcet increases the expression of 1αOHase in human parathyroid cultures. Additionally, we found that the 1αOHase in human parathyroid cultures is functionally active, as evidenced by the ability of the enzyme to 1-hydroxylate 25(OH)D(3) in parathyroid monolayers. Calcium, as well as cinacalcet, also induced expression of the degradation enzyme 24-hydroxylase, indicating the presence of a negative feedback system in the parathyroid cells. Therefore, local production of 1αOHase suggests an autocrine/paracrine role in regulating parathyroid function and may mediate, in part, the suppression of PTH by calcium and FGF-23.  相似文献   

7.
藏酋猴(Macaca thibetanus)甲状腺和甲状旁腺的组织学结构   总被引:1,自引:1,他引:0  
本文对藏酋猴甲状腺及甲状旁腺的组织切片进行了观察描述,主要研究了甲状腺C细胞和甲状旁腺嗜酸细胞的形态和分布状况。  相似文献   

8.
The influence of fixation methods, buffers and ions on the ultrastructure of parathyroid cells was studied in dogs, cats, rats and mice. Parathyroids fixed by immersion showed 3 chief cell variants referred to as cells in active, intermediate and resting stages, multinucleated syncytial cells, atrophic cells and, only in 1 feline parathyroid, a few oxyphil cells. Parathyroid glands fixed by perfusion, however, consisted only of 1 cell type. Satisfactory preservation was achieved by perfusion with 2.5% glutaraldehyde in 0.1 M Na cacodylate containing 0.25 mM CaCl2 and 0.5 mM MgCl2, and postfixation with 1% OsO4 in 0.1 M s-collidine containing 0.5 mM CaCl2 and 1.0 mM MgCl2. Good preservation was also obtained using Na phosphate during prefixation and postfixation. Other combinations of buffers led to shrinkage, dilation of rough endoplasmic reticulum cisternae, disruption of membranes or loss of matrix and secretory granules. The results demonstrate that the variants of parathyroid chief cells, multinucleated syncytial cells and atrophic cells arise during fixation.  相似文献   

9.
Parathyroid hormone-related protein (PTHrP), a factor responsible for malignancy associated hypercalcemia, plays a physiological roles such as bone development and placental calcium transport. The expression of PTHrP in adult human parathyroid tissues under normal and pathological conditions was analyzed. By immunohistochemistry, PTHrP expression was detected in 86% of normal parathyroid (12/14 cases), 74% of adenomas (14/19) and 89% of hyperplasia secondary to chronic renal failure (16/18). PTHrP protein was observed mainly in the cytoplasm of oxyphil cells, consistent with the localization of its mRNA demonstrated by in situ hybridization. The rate of PTHrP-positive cells was higher in areas consisting of oxyphil cells than in those of non-oxyphil cells, regardless of whether the parathyroid was normal or pathological. In the normal parathyroid, an age-related increase in PTHrP expression was observed with a relative increase in oxyphil cells, reflecting aging and deterioration of parathyroid tissue. In adenoma, cases with a predominance of oxyphil cells expressed PTHrP, whereas clear cell adenoma did not. In secondary hyperplasia, the rate of PTHrP-expressing cells was higher than in normal parathyroid or adenoma, with varying levels of expression among nodules. We speculate that PTHrP could act through the paracrine/autocrine mechanism to regulate proliferation and differentiation of normal and neoplastic parathyroid cells.  相似文献   

10.
The elemental composition of chief cells of parathyroid glands from patients with adenomatous primary hyperparathyroidism (HPT) and uremic secondary HPT was studied by X-ray microanalysis. Glands histologically deemed normal were used as controls. The analyses were also carried out on tissue specimens incubated in hypo-, normo- and hypercalcemic media (0.5, 1.25, and 3.0 mM calcium concentration). Analysis of chief cells from normal glands did not reveal any significant differences in ionic composition after exposure to the different calcium concentrations. In chief cells from adenomatous and uremic hyperplastic glands, elemental changes were noted. In comparison with specimens incubated in 1.25 mM calcium medium, cells in 0.5 mM calcium medium had a lower content of potassium and phosphorus. After stimulation with increasing extracellular concentration, an increase in the K/Na ratio was observed, due to a marked decrease of sodium and an increase of potassium: the calcium concentration was almost unchanged. Our findings indicate that in HPT an increase in serum calcium concentration might exert a stimulatory effect on the Na/K pump (sodium pump) and on the calcium-activated potassium channels. Either of these mechanisms might contribute to a lowering of cytoplasmic calcium. Our observations suggest that changes in ionic content of the parathyroid cells may be of importance for the stimulus secretion process in the cells.  相似文献   

11.
Summary The ultrastructure of the chief cells of the parathyroid gland and thyroid parafollicular (C) cells and the morphology of bone in calcium depletion and subsequent repletion were examined in young growing pigs. A low calcium diet resulted in osteopenia, increased removal of the cartilaginous core, osteoclasia and osteocytic osteolysis. Subsequent repletion quickly returned bone to normal. In pigs fed the low calcium diet, there was a marked depletion of secretory granules but a striking increase in the number of microtubules in chief cells. Increasing the calcium content of the diet to normal quickly returned the ultrastructural appearance of chief cells to apparent normal. In the initial response to calcium repletion, chief cells exhibited large number of lysosomes and occasionally prominent paracrystalloid bodies. Electron microscopic examination of parafollicular (C) cells of the thyroid gland failed to reveal differences in ultrastructure between test and control pigs. These findings support the view that bone resorption following calcium deficiency may be the result of a secondary hyperparathyroidism rather than of calcium deficiency per se.Supported by U.S.P.H.S. Grant A.M. 12957 from the Division of Arthritis and Metabolic Diseases  相似文献   

12.
The parathyroid hormone (PTH) acts on bones, intestines, and kidneys to maintain the calcium homeostasis which, in turn, is a main factor in controling the parathyroid (PT) gland activity. In all mammals studied, the chief cells of PT glands changed their size, shape, and cytoplasmic structure due to different functional states which vary the serum calcium levels. The chief cells of the rat PT glands were classified as dark and light. The dark cells may constitute an active form, characterized mainly by the abundant free ribosomes, conspicuous rough endoplasmic reticulum, and GOLGI complexes, greater number of secretory granules (SG) and increased tortuosity of the plasma membranes as compared to the light ones which were considered as a less active type of cells. Due to different calcium requirements in newborn and young rats for the ossification of growing skeleton and in adult and senile rats with consolidate mature bones, the PT glands studied with electron microscope showed various cytological features. The parenchyma of newborn and young PT glands was composed by dark chief cells. The light chief cells were more frequent in adult and senile animals as a less active type of cell. Mature SG were only occasionally observed in dark cells of newborn, young and adult PT glands. They may constitute a reserve supply of PTH but probably not the main way of secretion, according to their little number. Another pool of PTH probably answers the needs for the small basal variations in the steady-state secretion and may be represented by the vesicles observed in the chief cells cytoplasm.  相似文献   

13.
NMDA ionotropic glutamate receptors gate the cytoplasmic influx of calcium, which may, depending on the intensity of the stimulus, subserve either normal synaptic communication or cell death. We demonstrate that when isolated mitochondria are exposed to calcium and NMDA agonists, there is a significant increase in mitochondrial calcium levels. The agonist/antagonist response studies on purified mitochondria suggest the presence of a receptor on mitochondria with features similar to plasma membrane NMDA receptors. Immunogold electron microscopy of hippocampal tissue sections revealed extensive localization of NR2a subunit immunoreactivity on mitochondria. Transient transfection of neuronal GT1-7 cells with an NR1-NR2a NMDA receptor subunit cassette specifically targeting mitochondria resulted in a significant increase in mitochondrial calcium and neuroprotection against glutamate-induced cell death. Mitochondria prepared from GT1-7 cells in which the NR1 subunit of NMDA receptors was silenced demonstrated a decrease in calcium uptake. Our findings are the first to demonstrate that mitochondria express a calcium transport protein that shares characteristics with the NMDA receptor and may play a neuroprotective role.  相似文献   

14.
Summary The distribution of intracellular calcium was determined in isolated kidney cells by kinetic analyses of45Ca fluxes. Isotopic desaturation curves reveal an intracellular calcium compartment with a very slow time constant. The size of this calcium compartment is markedly increased by raising the extracellular calcium, by increasing the extracellular phosphate and may contain up to 99% of the intracellular exchangeable calcium. Accumulation of calcium in this pool is completely abolished by two specific inhibitors of mitochondrial calcium uptake, Antimycin A and Warfarin®. These results suggest that this compartment represents a pool of calcium in the cell mitochondria. The sudden removal of phosphate from the medium immediately stimulates calcium efflux from the cell. Conversely, an increase in medium phosphate immediately inhibits calcium efflux. Both effects are rapidly reversible. Finally, calcium efflux from the cells is stimulated after the cells are exposed to low temperature suggesting that calcium transport out of the cell may be regulated by the cytoplasmic calcium activity. These experiments are consistent with the view that mitochondria play an important role in the control and regulation of cytoplasmic calcium activity and of calcium transport.  相似文献   

15.
Summary In Acanthamoeba cells both Ca and Cd may be precipitated in different cytoplasmic compartments forming electron-opaque deposits, as shown in cells treated with glutaraldehyde supplied with either Ca or Cd respectively. It was found by semiquantitative X-ray microanalysis that the transfer of cells containing Cadeposits to glutaraldehyde supplied with Cd causes a considerable replacement of Ca by Cd: in deposits formed at cell membrane, in cytoplasm, and in mitochondria the total weight percentage of Cd amounted to over 90, only in deposits formed in vacuoles the value was about 80. The replacement was not prevented by the presence of Ca in the transfer medium. When cells containing Cd-deposits were transferred to Ca-supplied medium, Cd predominated as well, its total weight percentage also amounting to over 90 in all the examined deposits. The results suggest that calcium bound in different cell structures may be easily replaced by cadmium, but not conversely, which suggests that Cd is more firmly than calcium linked to many cell constituents well preserved by fixation.  相似文献   

16.
Summary The structure of the frog gastric and esophageal mucosa was studied in the course of a complete hibernation period and compared with that in summer frogs (see preceding article).It appeared that especially chief cells and parietal cells are liable to cytoplasmic remodelling. Thus, in chief cells the rough endoplasmic reticulum (RER) undergoes disorganization, the number of free ribosomes increases and the Golgi system becomes transformed into a compact vesicular structure. The number of pepsinogen granules in chief cells of late winter frogs is only 20% of that in frogs studied at the onset of hibernation. The loss of pepsinogen granules is at least partly due to autophagy. In addition, lysosomes are involved in focal degradation of the cytoplasm, which may ultimately result in complete degeneration of some chief cells. The presence of zymogen granules containing fibrocyte-like cells in the tunica propria proved heterophagocytosis by these cells.In parietal cells, the area occupied by smooth endoplasmic reticulum becomes reduced. The basal cytoplasm of both chief cells and parietal cells contains numerous lipid droplets, which, in contrast to those in summer frogs, are continuous with RER cisternae. The juxtaposition of lipid droplets and mitochondria seen in summer frogs is eventually lost in hibernating animals.Apart from the appearance of supra-nuclear lipid droplets, the mucous cells of the surface epithelium show no striking alterations. However, in the glandular pits both surface mucous cells and mucous neck cells contain less mucous granules than in summer frogs.The results are discussed in connection with parallel biochemical work and available literature, and in the light of our previous studies on the exocrine pancreas in hibernating frogs.  相似文献   

17.
Calcium concentrations of various pancreatic B cell organelles have been determined by X-ray microanalysis of areas of frozen sections of unfixed rat islets of Langerhans. Highest concentrations were detected in storage granules and in mitochondria, although calcium was also present in nuclei, in areas of endoplasmic reticulum and of cytoplasm. Accumulation of 45Ca by isolated organelles has been studied in homogenates and isolated subcellular fractions of rat islets of Langerhans. In the presence of a permeant anion (oxalate or phosphate), accumulation of 45Ca into mitochondria and microsomes was strongly stimulated by ATP. This net uptake was diminished during incubation of homogenates or of a mitochondria plus storage granule-rich fraction in the presence of cyclic AMP, dibutyryl cyclic GMP; 2:4-dinitrophenol or of ruthenium red. Investigations of the characteristics of 45Ca accumulation by homogenates prepared from storage granule-depleted islets showed no differences from those of normal islets, suggesting that the granules do not represent an important labile pool of calcium. With the exception of cyclic AMP and cyclic GMP none of the insulin secretagogues tested (glucose, leucine, arginine, adrenalin, noradrenalin, theophylline, glibenclamide) altered calcium accumulation by islet homogenates. On the basis of absolute calcium levels and of 45Ca uptake studies it is concluded that islet B cells contain a readily exchangeable mitochondrial calcium pool, and an endoplasmic reticulum pool containing a lower concentration of calcium which is also readily exchangeable. The storage granules, despite their high calcium content, do not appear to constitute a labile pool. It seems likely that the labile mitochondria and endoplasmic reticulum pools play a predominant role in the regulation of cytoplasmic free calcium levels, which may in turn be important in the regulation of rates of insulin secretion.  相似文献   

18.
CALCIUM METABOLISM IN ISOLATED BRAIN CELLS AND SUBCELLULAR FRACTIONS   总被引:6,自引:4,他引:2  
Abstract— The accumulation of calcium ions by brain mitochondria and microsomes and by fractions containing neuronal or glial cells has been studied in vitro with techniques involving 45Ca and ultramicro-flame photometry. ATP and substrate-supported calcium accumulation by brain mitochondria was of the same magnitude as for mitochondria from other organs. Brain microsomes accumulated calcium approximately 15 times less than brain mitochondria. Variations in Na+/K+ ratios and in ATP/ADP ratios had a more marked influence on microsomal uptake than on mitochondrial uptake. The passive Ca2+ binding by glial cells was higher than neuronal perikarya and synaptosomes. Also the calcium accumulation ability in cell suspensions was slightly higher for glial cells as compared to neuronal perikarya. The calcium uptake by glial cells was stimulated by high external K+ concentration, which also was the case for nerve endings. The uptake in neuronal perikarya was unaffected by variations in K+ concentration. A comparison between neuronal and glial mitochondria showed that both reach a steady state level of similar magnitude, but that the rate of initial accumulation was greater for glial mitochondria. A high glial calcium accumulation was also observed for the microsomal fraction.  相似文献   

19.
Parathyroid follicle formation was studied in Mongolian gerbils subjected to different concentrations of calcium in vivo and in vitro, using light and electron microscopic methods, including the potassium pyroantimonate technique and x-ray microanalysis for identification of cations. Follicles were frequent at high calcium concentration, but sparse at intermediate and low levels of calcium. Two main types of follicle were differentiated: "degenerative follicles" containing cellular debris and lined by smooth-surfaced epithelium which occasionally showed degenerative changes; and "secretory follicles" characterized by amorphous and granular contents, and an epithelium possessing microvilli and cytoplasmic projections. Amorphous masses were also seen in dilated intercellular spaces and in dilated cisterns of rough endoplasmic reticulum in the follicle epithelium. Calcium-containing precipitates were found in degenerating chief cells, and between degenerating cells and follicles. Parathyroid follicles are believed to be formed by degeneration of suppressed chief cells (degenerative follicles), and by secretion of hormonal and/or other substances into dilated intercellular spaces which progressively increase in size to form follicular cavities (secretory follicles), thereby possibly reducing the level of metabolically active parathyroid hormone. Functional suppression is believed to underlie the development of parathyroid follicles.  相似文献   

20.
The ultrastructure of the parathyroid chief cell in the woodchuck, Marmota monax, was studied during the four seasons of the year. Spring chief cells have stacks of granular endoplasmic reticulum, prominent multiple Golgi zones and many clumped mitochondria. Summer cells resemble those seen in the spring but the mitochondria are associated with stacks of granular endoplasmic reticulum. Multiple areas of stacked granular endoplasmic reticulum characterize the fall chief cells. Their Golgi zones are large and are associated with many dense core secretory granules. Lipoid vacuoles are frequently noted. Winter chief cells have secretory granules and phagolysosomes (dense bodies). Some of these cells contain stacked arrays of granular endoplasmic reticulum associated with mitochondria, others have only short segments. The above morphological findings are discussed in relation to those in other hibernators, the parafollicular (C) cell, and to the cyclic seasonal activities of the woodchuck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号