首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
The proliferation, apoptosis and protein kinase A (PKA) in porcine cumulus oophorus (CO) before and after 40 h of culture together with oocytes in the presence of IGF-I, IGF-II and EGF (all at 10 ng x mL(-1) medium) were compared. Cellular proliferation, apoptosis and PKA contents were evaluated by immunocytochemistry using specific antibodies against PCNA, TUNEL and catalytic (C-alpha) and regulatory (RI) subunits of PKA. The in-vitro culture of oocyte-CO complexes in a basal medium was accompanied by a decrease in the proportion of PCNA-positive CO cells (from 51 to 36%, p < 0.05). The addition of either IGF-I or EGF to the culture medium prevented this process and increased the proliferation rate (64 and 67% respectively, p < 0.001). During culture, the percentage of apoptotic (TUNEL-positive) CO cells increased from 42 to 57% (p < 0.01). The addition of IGF-I or EGF resulted in the inhibition of apoptosis to 36 and 12% respectively (p < 0.001). IGF-II and EGF reduced the amount of PKA catalytic subunits in the CO (percentage of cells with immunoreactive PKA catalytic subunits (28%, p < 0.05 and 27%, p < 0.05 respectively; versus control -41%), whilst the effect of IGF-I on this index was insignificant (31%). The expression of the PKA regulatory subunit was increased by EGF (51% compared with 29% in the control, p < 0.05), but not by IGF-I or IGF-II (30 and 29%). Our observations demonstrate that 40 h of culture of porcine CO resulted in a decrease in the proliferation and development of apoptosis in CO cells. IGF-I or EGF can stimulate proliferation and inhibit apoptosis. The influence of growth factors on the PKA content of the CO suggests that cAMP/PKA may be a mediator of the action of growth factors on these cells. The differential effects of IGFs and EGF on the regulatory subunit of PKA may indicate differences between their mechanisms of action.  相似文献   

3.
To understand the role of protein kinase A (PKA) in the control of ovarian secretory activity, we examined effects of stimulators (db-cAMP, 6-Phe-cAMP, Sp-cDBIMPS) or inhibitors (Rp-cAMPS, KT5720) of PKA on the release of insulin-like growth factor I (IGF-I), progesterone (P) and estradiol (E) by cultured porcine granulosa cells using RIA. All the PKA stimulators db-cAMP (10-10000 ng/ml), 6-Phe-cAMP (10-10000 pmol) or Sp-cDBIMPS (1-10000 pmol) increased IGF-I almost at all doses tested. P release was stimulated by db-cAMP (at doses 100-10000 ng/ml), Sp-cDBIMPS (at 10-1000 pmol) and 6-Phe-cAMP (at 1000 and 10000 pmol). The release of E was stimulated by Sp-cDBIMPS (1-100 pmol), db-cAMP (1000 and 10000 ng/ml) and 6-Phe-cAMP (1000 and 10000 pmol). Since Sp-cDBIMPS, which activates preferentially PKA isozyme type II, showed stimulating effects at doses lower than those of 6-Phe-cAMP, a preferential activator of both, type I and II of PKA, it is assumed that PKA type II is more important for the control of ovarian steroidogenesis than type I. A PKA inhibitor Rp-cAMPS inhibited release of IGF-I (10000 pmol), P (1000 pmol) and E (1000 and 10000 pmol), whereas Rp-cAMPS, at doses higher than 1000 pmol, tended to reverse this inhibitory effect. Other PKA inhibitor KT5720 suppressed P (at 10-1000 ng/ml), but not IGF-I or E release.The stimulation of growth factor and sex steroid release by PKA activators, and suppression of the secretion some of these substances by PKA inhibitors may indicate the implication of PKA (probably site B) in up- and down-regulation of ovarian IGF-I and steroid release.  相似文献   

4.
In medusae of the hydrozoan Cytaeis uchidae, oocyte meiotic maturation and spawning occur as a consequence of dark-light transition. In this study, we investigated the mechanism underlying the initiation of meiotic maturation using in vitro (isolated oocytes from ovaries) and in vivo (ovarian oocytes in medusae) systems. Injection of cAMP derivatives into isolated oocytes induced meiotic maturation in a dose-dependent manner. Meiotic maturation was also achieved in isolated oocytes preloaded with caged cAMP and exposed to UV irradiation. The caged cAMP/UV irradiation-induced meiotic maturation was completely inhibited by blockers of protein kinase A (PKA), H-89, KT5720, and Rp-cAMPS. The medusae from which most parts of the umbrella were removed (umbrella-free medusae) survived for at least 2 weeks, during which time oocyte meiotic maturation and spawning occurred. When H-89 and Rp-cAMPS were injected into ovarian oocytes of umbrella-free medusae within 3 min of dark-light stimulation, meiotic maturation was inhibited or delayed. An increase in intracellular cAMP was confirmed by FlCRhR, a fluorescent cAMP indicator, in ovarian oocytes exposed to dark-light transition as well as in isolated oocytes stimulated by caged cAMP/UV irradiation. These results indicate that the cAMP/PKA signaling pathway positively contributes to light-triggered physiological oocyte meiotic maturation in Cytaeis uchidae.  相似文献   

5.
The general aim of our in vitro experiments was to study the role of the metabolic hormones leptin, ghrelin, obestatin and IGF-I and mitogen-activated protein kinase (MAPK)-dependent intracellular mechanisms in the control of nuclear maturation of porcine oocytes. For this purpose, porcine oocytes were isolated from the ovary and cultured in the presence of leptin, ghrelin, obestatin, IGF-I, MAPK blocker PD98059 and the combinations of hormones with PD98059. Proportions of matured oocytes (at metaphase II of meiosis, determined by DAPI staining) and of oocytes containing MAPK/ERK1-2 (determined by immunocytochemistry) were measured before and after culture. It was observed that the majority of oocytes isolated from the ovary before culture were immature and did not contain visible MAPK, but some oocytes were mature, and the majority of these oocytes contained MAPK. Incubation of oocytes resulted in a significant increase in the proportion of matured oocytes and in the percentage of oocytes containing MAPK in both the matured and not matured groups. Addition of IGF-I to the culture medium increased the proportion of matured oocytes, addition of leptin decreased it, and ghrelin and obestatin did not oocyte maturation. Addition of hormones did not affect the expression of MAPK in either immature or mature oocytes. PD98059, when given alone, suppressed the maturation and accumulation of MAPK in both mature and immature oocytes. When given together with hormones, PD98059 was able to reduce the stimulatory effect of IGF-I, to invert the inhibitory action of leptin to stimulatory and to induce the stimulatory action of ghrelin and obestatin on meiosis. IGF-I, ghrelin and obestatin, but not leptin, when given together with PD98059, increased the accumulation of MAPK in both immature and mature oocytes. Association of nuclear maturation and expression of MAPK in oocytes before, but not after culture, as well as the prevention of oocyte maturation by MAPK blocker suggests the involvement of MAPK-dependent intracellular mechanisms in the promotion of reinitiation, but not completion of meiosis. The effect of hormonal additions on meiosis of oocytes suggests that IGF-I is a stimulator, leptin can be an inhibitor, while ghrelin and obestatin probably do not control oocyte maturation. The ability of PD98059 to modify the effect of hormones on oocyte maturation and on MAPK expression suggests possible interference of hormones and MAPK-dependent intracellular mechanisms in oocytes. However, no influence of hormones on MAPK and lack of association between action of hormones and PD98059 on MAPK and meiosis suggest that MAPK is probably not a mediator of effect of IGF-I, leptin, ghrelin and obestatin on porcine oocyte nuclear maturation.  相似文献   

6.
The objective of these experiments was to determine the effect of exogenous addition of insulin-like growth factor-I (IGF-I, 100 ng/mL), epidermal growth factor (EGF, 10 ng/mL) and estradiol (E2, 100 ng/mL) to the maturation medium of sheep oocytes on their subsequent development in vitro. Addition of IGF-I to the maturation medium did not improve nuclear or cytoplasmic maturation of sheep oocytes at the concentration tested. However, EGF improved significantly the resumption of meiosis (84% oocytes in metaphase II stage after IVM vs. 59% in medium alone). Cleavage rate and blastocyst development rates were improved (P<0.01) after addition of EGF (60% and 29%, respectively), as compared with maturation in TCM 199 alone (39% and 19%, respectively), but remained lower than rates observed after maturation in complete medium containing follicular fluid (FF, 10%) and FSH (81% and 35%, respectively). No additive effect of EGF over FSH was observed during these experiments. Addition of FF to FSH containing maturation medium improved significantly both cleavage (P<0.001) and blastocyst rates (P<0.05). Addition of E2 to the IVM medium is not required when medium already contains FF. However, in defined conditions supplementation of maturation medium with E2 had a positive effect. These results suggest that EGF, FSH and E2 may play an important role in the nuclear and cytoplasmic maturation of sheep oocytes in vitro.  相似文献   

7.
The aim of this study was to investigate the actions of insulin-like growth factor I (IGF-I) on the secretory and proliferative functions of rabbit ovarian cells and on early embryogenesis. It was found that addition of IGF-I at a lower concentration (1 ng/ml) stimulated progesterone secretion by cultured rabbit granulosa cells, whilst higher concentrations of IGF-I (10, 100 ng/ml) were inhibitory. IGF-I had no effect on estradiol secretion. Cyclic AMP secretion was slightly increased after addition of IGF-I at 10 ng/ml, but not by higher concentrations. Cyclic GMP secretion was stimulated by IGF-I at 100 ng/ml only. A blocker of protein kinase A, Rp-cAMPS, did not alter progesterone and estradiol secretion but did prevent the action of IGF-I on progesterone secretion. An immunocytochemical study demonstrated that IGF-I significantly increased the proportion of proliferating cell nuclear antigen-positive (PCNA-positive) cells. Rp-cAMP did not change cell proliferation but partially prevented the proliferation-stimulating effect of IGF-I. IGF-I (100 ng/ml) significantly increased the proportion of divided zygotes and the number of embryos reaching the morula/blastocyst stage. Blockers of PKA, Rp-cAMPS and KT5720, reversed the effects of IGF-I on zygote cleavage and embryo development. Addition of IGF-I (100 ng/ml) significantly increased MAPK within the cells (proportion showing immunoreactivity to ERK-1 and ERK-3 antibodies and intensity of a 42 kDa band related to ERK-2). Rp-cAMPS suppressed the basal ERK-2 immunoreactivity but not that of ERK-1 or ERK-3. It completely inhibited the IGF-I-induced activation of ERK-3 but not that of ERK-1 or ERK-2. This in vitro study demonstrates that IGF-I is a potent stimulator of ovarian secretion, proliferation and embryogenesis in rabbit. Its effects are mediated by cAMP/PKA- and, probably by, MAPK-dependent intracellular mechanisms.  相似文献   

8.
The aim of this study was to test the following hypotheses: (i) that oocyte maturation is controlled by surrounding follicular cells; (ii) that a meiosis-regulating factor of follicular origin is not species-specific; (iii) that one of the follicular regulators of oocyte maturation is IGF-I; and, (iv) that Cumulus oophorus and tyrosine kinase-dependent intracellular mechanisms do not mediate IGF-I action on oocytes. It was found that co-culture of cumulus-enclosed bovine oocytes with isolated bovine ovarian follicles or with isolated porcine ovarian follicles significantly increased the proportion of matured oocytes (at metaphase II of meiosis) after culture. Porcine oocytes without cumulus investments had lower maturation rates than cumulus-enclosed oocytes. Co-culture with isolated porcine ovarian follicles resulted in stimulation of maturation of both cumulus-free and cumulus-enclosed porcine oocytes. These observations suggest that follicular cells (whole follicles or Cumulus oophorus) support bovine and porcine oocyte maturation, and that follicular maturation-promoting factor is not species-specific. The release of significant amounts of IGF-I by cultured bovine and porcine isolated follicles and granulosa cells was demonstrated. Addition of IGF-I to culture medium at 10 or 100 (but not 1000) ng/ml stimulated meiotic maturation of both cumulus-enclosed and cumulus-free porcine oocytes. Neither of the tyrosine kinase blockers, genistein or lavendustin (100 ng/ml medium), changed the stimulating effect of IGF-I on porcine oocytes. The present data suggest that at least one of the follicular stimulators of oocyte nuclear maturation is IGF-I, and that its effect is probably not mediated by cumulus investment or by tyrosine kinase-dependent intracellular mechanisms.  相似文献   

9.
Experiments were conducted to determine the effects of meiosis-inhibiting-agents and gonadotropins on nuclear maturation of canine oocytes. The culture medium was TCM199 + 10 ng/ml epidermal growth factor supplemented with 25 microM beta-mercaptoethanol, 0.25 mM pyruvate, and 1.0 mM L-glutamine (Basal TCM). Initially, oocytes were cultured in Basal TCM alone or in Basal TCM + dibutylryl cyclic adenosine monophosphate (0.5, 1, 5, or 10 mM dbcAMP) for 24 hr. Dibutylryl cAMP inhibited resumption of meiosis in a dose-dependent manner; 60% of oocytes remained at the germinal vesicle (GV) stage after being cultured for 24 hr in 5 mM dbcAMP. The meiosis-inhibitory effect of dbcAMP appeared to be reversible, as the oocytes resumed meiosis and completed nuclear maturation after being cultured for an additional 48 hr in its absence. Oocytes were then cultured in Basal TCM alone or in Basal TCM + roscovitine (12.5, 25, or 50 microM) for 24 hr. Although approximately 60% of oocytes cultured in 25 microM roscovitine remained at the GV stage, this percentage was not significantly different from the 48% that also remained at the GV stage when cultured in its absence. Oocytes were cultured in Basal TCM + 25 microM roscovitine for 17 hr, exposed briefly to equine chorionic gonadotropin (eCG), and then cultured in Basal TCM for 48 hr. Short exposure of oocytes to eCG was beneficial, as it significantly increased the proportion of oocytes developing beyond germinal vesicle breakdown (P < 0.05) with approximately 20-30% of these were metaphase I (MI) oocytes. Study of the kinetics of nuclear maturation demonstrated that large numbers of oocytes remained at MI even after being cultured for 52 hr following brief exposure to eCG. This study showed that in vitro maturation of canine oocytes can be somewhat improved by short exposure of oocytes to eCG. However, further studies are still required to derive effective methods to mature canine oocytes in vitro.  相似文献   

10.
Mammalian growing oocytes (GOs) lack the ability to resume meiosis, although the molecular mechanism of this limitation is not fully understood. In the present study, we cloned cDNAs of cAMP-dependent protein-kinase (PKA) subunits from porcine oocytes and analyzed the involvement of the PKA regulation mechanism in the meiotic incompetence of GOs at the molecular level. We found a cAMP-independent high PKA activity in GOs throughout the in vitro culture using a porcine PKA assay system we established, and inhibition of the activity by injection of the antisense RNA of the PKA catalytic subunit (PKA-C) induced meiotic resumption in GOs. Then we examined the possibility that the amount of the PKA regulatory subunit (PKA-R), which can bind and inhibit PKA-C, was insufficient to suppress PKA activity in GOs because of the overexpression of two PKA-Rs, PRKAR1A and PRKAR2A. We found that neither of them affected PKA activity and induced meiotic resumption in GO although PRKAR2A could inhibit PKA activity and induce meiosis in cAMP-treated full-grown oocytes (FGOs). Finally, we analyzed the subcellular localization of PKA subunits and found that all the subunits were localized in the cytoplasm during meiotic arrest and that PKA-C and PRKAR2A, but not PRKAR1A, entered into the nucleus just before meiotic resumption in FGOs, whereas all of them remained in the cytoplasm in GOs throughout the culture period. Our findings suggest that the continuous high PKA activity is a primary cause of the meiotic incompetence of porcine GOs and that this PKA activity is not simply caused by an insufficient expression level of PKA-R, but can be attributed to more complex spatial-temporal regulation mechanisms.  相似文献   

11.
The objective was to evaluate the effects of angiotensin II (Ang II), insulin-like growth factor-I (IGF-I) and insulin on the nuclear and cytoplasmic maturation of bovine oocytes in the presence of follicular cells. Cumulus-oocyte complexes (COCs) were cultured for 22h in the presence of follicular cells (control with cells) and Ang II, IGF-I or insulin (treatments), or in the absence of follicular cells (control without cells). Using these five groups, Experiment 1 was conducted with and without the addition of gonadotrophins. Only oocytes in the Ang II group resumed meiosis at rates (88.2+/-1.8% and 90.7+/-4.3% for oocytes cultured in the absence or presence of LH/FSH, respectively) similar to those observed for oocytes cultured in the absence of follicular cells (89.7+/-0.3% and 92.6+/-2.6%; P<0.01). In Experiment 2, the effect of Ang II alone and in combination with IGF-I or insulin on oocyte maturation for 7h (germinal vesicle breakdown), 12h (metaphase I) and 22h (metaphase II) was evaluated in a design similar to that of the first experiment. Ang II plus IGF-I or insulin induced the resumption of meiosis, irrespective of the presence of gonadotrophins (P<0.01). Experiment 3 used groups similar Experiment 2 to determine the rate of subsequent embryo development, using fetal calf serum (FCS) in the culture medium. The COCs were cultured in maturation medium for 1h (1+23h), 12h (12+12h) or 24h in the presence of follicular cells and the respective treatments and for the remaining period in the absence of follicular cells to complete 24h. In Experiment 4, BSA was used in lieu of serum in the maturation medium in a 12+12h maturation system. Oocytes matured using the 12+12h system with BSA or FCS in the presence of Ang II+IGF-I had higher rates of blastocyst formation than the other treatments (P<0.05). In conclusion, Ang II reversed the inhibitory effect of follicular cells on nuclear maturation of bovine oocytes, irrespective of the presence of gonadotrophins, IGF-I and insulin. However, oocyte cytoplasmatic maturation (i.e., subsequent embryo development), was higher when Ang II and IGF-I were present in the maturation medium containing follicular cells cultured for 12+12h.  相似文献   

12.
The main limit of in vitro production of domestic mammal embryos comes from the low capacity of in vitro matured oocytes to develop after fertilization. As soon as they are separated from follicular environment, oocytes spontaneously resume meiosis without completion of their terminal differentiation. Roscovitine (ROS), an inhibitor of M-phase promoting factor (MPF) kinase activity reversibly blocks the meiotic resumption in vitro. However, in cattle maturing oocytes several cellular events such as protein synthesis and phosphorylation, chromatin condensation and nuclear envelope folding escape ROS inhibition suggesting the alternative pathways in oocyte maturation. We compared the level of synthesis and phosphorylation of several protein kinases during bovine cumulus oocyte complex (COC) maturation in vitro in the presence or not of epidermal growth factor (EGF) and ROS. We showed that during the EGF-stimulated maturation, ROS neither affected the decrease of EGF receptor (EGFR) nor did inhibit totally its phosphorylation in cumulus cells and also did not totally eliminate tyrosine phosphorylation in oocytes. However, ROS did inhibit the Phosphoinositide 3-kinase (PI3) activity when oocytes mature without EGF. Accumulation of Akt/PKB (protein kinase B), JNK1/2 (jun N-terminal kinases) and Aurora-A in oocytes during maturation was not affected by ROS. However, the phosphorylation of Akt but not JNKs was diminished in ROS-treated oocytes. Thus, PI3 kinase/Akt, JNK1/2 and Aurora-A are likely to be involved in the regulation of bovine oocyte maturation and some of these pathways seem to be independent to MPF activity and meiotic resumption. This complex regulation may explain the partial meiotic arrest of ROS-treated oocytes and the accelerated maturation observed after such treatment.  相似文献   

13.
Funahashi H  Koike T  Sakai R 《Theriogenology》2008,70(7):1041-1047
The objective was to examine potential roles of glucose and pyruvate in nuclear and cytoplasmic maturation of porcine oocytes. Oocyte-cumulus complexes (OCC), derived from 3 to 6mm follicles, were cultured in a chemically defined medium (pyruvate-free mNCSU37-PVA), with or without 5.55mM glucose, during in vitro maturation (IVM); in the absence of glucose, germinal vesicle breakdown (GVBD) and nuclear maturation were prevented (P<0.05). Subsequently, OCC were cultured for IVM in glucose-containing mNCSU37-PVA supplemented with 6-amononicotinamide (6-AN) and diphenyleneiodonium (DPI), inhibitors of the pentose phosphate pathway (PPP); both compounds (>/=10muM 6-AN and >/=10nM DPI) inhibited resumption of meiosis (P<0.05). Supplementation of glucose-free maturation medium with increasing concentrations of pyruvate induced resumption of meiosis and increased the incidence of oocytes reaching metaphase-II in a concentration-dependent manner (P<0.05). More mature oocytes were obtained in the presence of pyruvate+glucose (P<0.05). After culture to allow maturation, glutathione content was higher in oocytes cultured in the presence of pyruvate alone than in those cultured in glucose alone; inclusion of 6-AN abolished responses to pyruvate (P<0.05). In conclusion, both glucose and pyruvate played a critical role in the release of porcine oocytes from arrest at the GV-I stage, probably through the PPP, whereas supplementation with pyruvate improved cytoplasmic maturation, as determined by oocyte glutathione content.  相似文献   

14.
S.J. Uhm  J.H. Yang  T.S. Min 《Theriogenology》2010,73(8):1024-1036
Epidermal growth factor (EGF) has been considered a potential regulator of meiotic and cytoplasmic maturation in mammalian oocytes, but inconsistencies exist between earlier studies, probably due to differences in the culture conditions used. Using a serum- and hormone-free in vitro maturation (IVM) medium, this study investigated the specific contribution of EGF on IVM of porcine (Sus scrofa) oocytes and its interactive effects with follicle-stimulating hormone (FSH), porcine follicular fluid (pFF), cumulus cells, and serum. It was noteworthy that EGF functionally mimicked the action of FSH and could completely replace FSH for nuclear maturation (83.2 ± 4.4% vs. 55.9 ± 5.2%; mean ± SEM), whereas EGF had a synergistic effect with FSH on cytoplasmic maturation of porcine oocytes (P < 0.05). Specific inhibition of EGF receptor (EGFR) by tyrphostin AG 1478 inhibited both EGF- and FSH-induced meiotic resumption (17.9 ± 5.2% and 18.2 ± 4.4%, respectively), thereby suggesting that EGFR signaling pathway was essential for oocyte reentry into the meiotic cell cycle. Furthermore, it is possible that FSH action occurs via the EGFR signaling pathway to induce meiotic maturation, although alternate pathways could not be excluded. There were also individual or combined effects of cumulus cells, FSH, serum, and pFF with EGF on IVM of porcine oocytes (P < 0.05). Although FSH had a synergistic effect with EGF on cytoplasmic maturation, pFF masked the effects of EGF on both nuclear and cytoplasmic maturation of porcine oocytes (P < 0.05). Moreover, the presence of cumulus cells was essential for EGF action. In conclusion, a defined system was used to better examine the effects of EGF. We inferred that EGF functionally mimics FSH for nuclear maturation of porcine oocytes, and its exogenous supplementation into IVM medium can optimize the beneficial effects of FSH on cytoplasmic maturation of oocytes to obtain enhanced embryo development in vitro.  相似文献   

15.
16.
The aim of the present study was to define the role of protein kinase A (PKA)-, mitogen-activated protein kinase (MAPK)-, and cyclin-dependent kinase (CDK)-dependent pathways in the control of ovarian cell functions. The effects of PKA, MAPK, and CDK blockers (KT 5720, PD 98059, and olomoucine, respectively), given at doses of 0.001-10.0 μg/ml medium on functions of cultured rabbit granulosa cells were examined. Expression of PKA, MAPK/ERK1,2, secretory activity (IGF-I output), and proliferation (proliferating cell nuclear antigen, PCNA) in these cells were determined by RIA, immunocytochemistry and Western blotting. A PKA inhibitor, KT 5720 suppressed the expression of PKA and MAPK/ERK1,2, the IGF-I release, and the ratio of PCNA-positive cells in granulosa cells. A MAPK blocker, PD 98059 reduced the expression of MAPK/ERK1,2 (but not PKA), the IGF-I release, and percentage of PCNA-positive cells. A CDK blocker, olomoucine, increased the PKA expression, decreased the expression of MAPK/ERK1,2 and PCNA, but did not affect the IGF-I release. These observations confirm the involvement of PKs in control of basic ovarian functions and demonstrate the involvement of PKA in stimulation of ovarian cell proliferation and MAPK (but not CDK) and in promotion of ovarian IGF-I release. Different activity and specificity of the PKA, MAPK, and CDK blockers in their effects on PCNA and IGF-I suggests different biological role of these PKs in control of proliferative and secretory functions of rabbit ovarian cells.  相似文献   

17.
《Theriogenology》1996,46(1):97-108
Spontaneous meiosis resumption was investigated in small pig oocytes of various size categories. Two parameters were studied: 1) the possibility for inhibiting spontaneous meiosis resumption in small oocytes of various size categories and 2) the level of meiotic competence of small oocytes in which meiosis resumption had been temporarily blocked. It was observed that 1 mM dibutyryl cyclic adenosine monophosphate (dbcAMP) combined with 0.5 μM testosterone were able to prevent spontaneous maturation in pig oocytes of various size categories cultured in vitro for up to 10 d. Moreover, a culture of these oocytes with dbcAMP and testosterone has a beneficial effect on the integrity of the oocyte-granulosa cell complex. When oocytes were allowed to mature after long-term inhibition of maturation, the percentage of oocytes able to resume maturation was significantly increased. However, the portion of oocytes which completed maturation, reaching the metaphase II (M II) stage, did not increase. It was found that dbcAMP, in combination with testosterone, also efficiently inhibited spontaneous maturation in fully grown pig oocytes. When the inhibitory effect of dbcAMP and testosterone was reversed in fully grown oocytes, maturation was significantly accelerated.  相似文献   

18.
The aim of these experiments was to study the role of protein kinase A (PKA), cyclin-dependent kinase 2 (CDC2) and insulin-like growth factor II (IGF-II) in the control of ovarian function in domestic fowl, as well as the role of PKA and CDC2 in mediating the effects of IGF-II on the ovary. For this purpose, we studied the influence of an inhibitor of PKA (KT5720; 50 ng/ml), a CDC2 blocker (olomoucine; 1 microg/ml), IGF-II (0, 1, 10 or 100 ng/ml) and their combinations on cultured fragments of chicken ovarian follicular wall. Accumulation of PKA and CDC2 and secretion of progesterone (P4), testosterone (T), estradiol (E2) and arginine-vasotocin (AVT) were evaluated by using SDS-PAGE-Western blotting and RIA/EIA. IGF-II addition to culture medium stimulated T, E2 and AVT secretion and inhibited P4 secretion. These changes were associated with an increase in PKA and a decrease in CDC2 accumulation. The PKA blocker KT5720, when given alone, increased accumulation of PKA and secretion of T and E2, but not AVT and inhibited P4 secretion. The PKA blocker also prevented and even reversed the effects of IGF-II on PKA and steroid hormones secretion, but enhanced the action of IGF-II on AVT. The inhibitor of CDC2, olomoucine, when given alone, suppressed the expression of CDC2 and the secretion of P4 and AVT (but not T and E2). When given together with IGF-II, it augmented IGF-II-induced suppression of CDC2 and reversed the effects of IGF-II on P4 (but not on T, E2 or AVT). These observations demonstrate the involvement of PKA, CDC2 and IGF-II in regulating the secretory activity of avian ovarian cells. Our data also suggest the involvement of PKA in the mediation of IGF-II effects on P4, T, E2 and AVT secretion. CDC2 can mediate the effects of IGF-II on ovarian P4 secretion but not on other hormones.  相似文献   

19.
Phosphorylation is considered as a common post-translational modification implicated in the control of various key enzymes. In somatic and germinal cells, important regulators of the cell cycle are controlled by their phosphorylation status, and some act as kinases or phosphatases themselves. Bovine oocytes are blocked in the germinal vesicle (GV) stage until either an LH surge occurs or until oocytes are released from the inhibitory influence of the follicle. Meiotic resumption in vitro is therefore an excellent model for the study of phosphorylation events that occur in the G2/M transition, a control point of the cellular cycle. To better understand this transition, we have modulated, either directly or indirectly, kinases using known effectors (epidermal growth factor, EGF; isobutyl-methylxanthine-forskolin, Bx-Fk; 6-dimethylaminopurine, 6-DMAP) or phosphatases (okadaic acid, OA) or cycloheximide, which is known to inhibit maturation through protein synthesis suppression. With this procedure, influence on meiotic resumption and phosphoprotein patterns was verified. Both EGF and OA accelerated nuclear maturation after 9 hr of culture. Only 23% (n = 140) and 9% (n = 111) of oocytes were still at GV stage with EGF and OA, respectively, compared to 41% (n = 105) of control oocytes. The different treatments changed the protein patterns in oocytes. In cumulus cells, the patterns were especially modified by the OA treatment. Characteristic changes that occur in germ cells were also identified. Nuclear maturation was inhibited by modulators of kinase (6-DMAP, GV = 74%, n = 126; cAMP dependent protein kinase (PKA) stimulators, Bx-Fk, GV = 71%, n = 129) likewise, phosphoprotein patterns were affected, especially in oocytes. The cycloheximide treatment was able to maintain nearly all oocytes in GV after 9 hr of culture (GV = 92%, n = 131). This analysis allowed the identification of substrates for the different effectors used in this study and also helped in determining the levels of phosphorylation required for nuclear maturation. © 1995 wiley-Liss, Inc.  相似文献   

20.
The time course of nuclear maturation of oocytes was examined in brushtail possums, Trichosurus vulpecula. Oocytes were recovered from ovarian follicles > 2 mm in diameter after pregnant mares' serum gonadotrophin/porcine luteinizing hormone (PMSG/LH) treatment (in vivo matured) or 72 hr after PMSG treatment (in vitro matured). Oocytes recovered from small (< 2 mm) and large (> 2 mm) follicles were also assessed for their ability to mature in vitro. Staining with the DNA-specific dye Hoechst 33342 was used to assess the stage of nuclear development by fluorescence microscopy. The process of nuclear maturation progressed rapidly in vivo, as oocytes collected at 20-27 hr post-LH all had a GV, but by 28-29.5 hr post-LH approximately a third of eggs were MII. By 30-hr post-LH, more than 70% of oocytes had reached MII stage and all ovulated eggs were MII. In vitro, all oocytes were at germinal vesicle stage at the start of culture. After 24 hr of culture, 67% of oocytes had progressed to metaphase I/anaphase I of meiosis. After 36 hr, 25% of oocytes had completed maturation to metaphase II, increasing to 52% after 48 hr. Maturation of oocytes after 48 hr in culture was unaffected by the presence or absence of granulosa cells, PMSG or LH/porcine follicle stimulating hormone (FSH). More oocytes from large follicles (55%) completed maturation by 48 hr than from small follicles (15%). The potential of oocytes to mature after 48 hr in culture was dependent on the follicle harvested having reaching a critical diameter of 1.5 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号