首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
Collagen XXIII is a member of the transmembranous subfamily of collagens containing a cytoplasmic domain, a membrane-spanning hydrophobic domain, and three extracellular triple helical collagenous domains interspersed with non-collagenous domains. We cloned mouse, chicken, and humanalpha1(XXIII) collagen cDNAs and showed that this non-abundant collagen has a limited tissue distribution in non-tumor tissues. Lung, cornea, brain, skin, tendon, and kidney are the major sites of expression. In contrast, five transformed cell lines were tested for collagen XXIII expression, and all expressed the mRNA. In vivo the alpha1(XXIII) mRNA is found in mature and developing organs, the latter demonstrated using stages of embryonic chick cornea and mouse embryos. Polyclonal antibodies were generated in guinea pig and rabbit and showed that collagen XXIII has a transmembranous form and a shed form. Comparison of collagen XXIII with its closest relatives in the transmembranous subfamily of collagens, types XIII and XXV, which have the same number of triple helical and non-collagenous regions, showed that there is a discontinuity in the alignment of domains but that striking similarities remain despite this.  相似文献   

2.
Collagen XXIII belongs to the class of type II orientated transmembrane collagens. A common feature of these proteins is the presence of two forms of the molecule: a membrane-bound form and a shed form. Here we demonstrate that, in mouse lung, collagen XXIII is found predominantly as the full-length form, whereas in brain, it is present mostly as the shed form, suggesting that shedding is tissue-specific and tissue-regulated. To analyze the shedding process of collagen XXIII, a cell culture model was established. Mutations introduced into two putative proprotein convertase cleavage sites showed that altering the second cleavage site inactivated much of the shedding. This supports the idea that furin, a major physiological protease, is predominantly responsible for shedding. Furthermore, our studies indicate that collagen XXIII is localized in lipid rafts in the plasma membrane and that ectodomain shedding is altered by a cholesterol-dependent mechanism. Moreover, newly synthesized collagen XXIII either is cleaved inside the Golgi/trans-Golgi network or reaches the cell surface, where it becomes protected from processing by being localized in lipid rafts. These mechanisms allow the cell to regulate the amounts of cell surface-bound and secreted collagen XXIII.  相似文献   

3.
Alpha-helical coiled-coils are widely occurring protein oligomerization motifs. Here we show that most members of the collagen superfamily contain short, repeating heptad sequences typical of coiled coils. Such sequences are found at the N-terminal ends of the C-propeptide domains in all fibrillar procollagens. When fused C-terminal to a reporter molecule containing a collagen-like sequence that does not spontaneously trimerize, the C-propeptide heptad repeats induced trimerization. C-terminal heptad repeats were also found in the oligomerization domains of the multiplexins (collagens XV and XVIII). N-terminal heptad repeats are known to drive trimerization in transmembrane collagens, whereas fibril-associated collagens with interrupted triple helices, as well as collagens VII, XIII, XXIII, and XXV, were found to contain heptad repeats between collagen domains. Finally, heptad repeats were found in the von Willebrand factor A domains known to be involved in trimerization of collagen VI, as well as in collagen VII. These observations suggest that coiled-coil oligomerization domains are widely used in the assembly of collagens and collagen-like proteins.  相似文献   

4.
5.
Type XIII collagen is a homotrimeric transmembrane collagen composed of a short intracellular domain, a single membrane-spanning region, and an extracellular ectodomain with three collagenous domains (COL1-3) separated by short non-collagenous domains (NC1-4). Several collagenous transmembrane proteins have been found to harbor a conserved sequence next to their membrane-spanning regions, and in the case of type XIII collagen this sequence has been demonstrated to be important for chain association. We show here that this 21-residue sequence is necessary but not sufficient for NC1 association. Furthermore, the NC1 association region was predicted to form an alpha-helical coiled-coil structure, which may already begin at the membrane-spanning region, as is also predicted for the related collagen types XXIII and XXV. Interestingly, a second coiled-coil structure is predicted to be located in the NC3 domain of type XIII collagen and in the corresponding domains of types XXIII and XXV. It is found experimentally that the absence of the NC1 coiled-coil domain leads to a lack of disulfide-bonded trimers and misfolding of the membrane-proximal collagenous domain COL1, whereas the COL2 and COL3 domains are correctly folded. We suggest that the NC1 coiled-coil domain is important for association of the N-terminal part of the type XIII collagen alpha chains, whereas the NC3 coiled-coil domain is implicated in the association of the C-terminal part of the molecule. All in all, we propose that two widely separated coiled-coil domains of type XIII and related collagens function as independent oligomerization domains participating in the folding of distinct areas of the molecule.  相似文献   

6.
Collagen XIII and the homologous collagens XXIII and XXV form a subgroup of type II transmembrane proteins within the collagen superfamily. Collagen XIII consists of a short cytosolic domain, a transmembrane domain and a large extracellular ectodomain, which may be shed into the pericellular matrix. It has been proposed that collagen XIII may function as an adhesion molecule, due to its cellular localization at focal contacts, numerous interactions with basement membrane (BM) and other extracellular matrix (ECM) proteins and expression at various cell-cell and cell-matrix junctions. Recent in vivo studies highlight its involvement in the development, differentiation and maturation of musculoskeletal tissues and vessels and in maintaining tissue integrity.  相似文献   

7.
Type XIII collagen is a type II transmembrane protein with three collagenous (COL1-3) and four noncollagenous domains (NC1-4). The human alpha1(XIII) chain contains altogether eight cysteine residues. We introduced point mutations to six of the most N-terminal cysteine residues, and we show here that the two cysteines 117 and 119 at the end of the N-terminal noncollagenous domain (NC1) are responsible for linking the three alpha1(XIII) chains together by means of interchain disulfide bonds. In addition, the intracellular and transmembrane domains have an impact on trimer formation, whereas the cysteines in the transmembrane domain and the COL1, the NC2, and the C-terminal NC4 domains do not affect trimer formation. We also suggest that the first three noncollagenous domains (NC1-3) harbor repeating heptad sequences typical of alpha-helical coiled-coils, whereas the conserved NC4 lacks a coiled-coil probability. Prevention of the coiled-coil conformation in the NC3 domain is shown here to result in labile type XIII collagen molecules. Furthermore, a new subgroup of collagenous transmembrane proteins, the Rattus norvegicus, Drosophila melanogaster, and Caenorhabditis elegans colmedins, is enlarged to contain also Homo sapiens collomin, and Pan troglodytes, Mus musculus, Tetraodon nigroviridis, and Dano rerio proteins. We suggest that there is a structurally varied group of collagenous transmembrane proteins whose biosynthesis is characterized by a coiled-coil motif following the transmembrane domain, and that these trimerization domains appear to be associated with each of the collagenous domains. In the case of type XIII collagen, the trimeric molecule has disulfide bonds at the junction of the NC1 and COL1 domains, and the type XIII collagen-like molecules (collagen types XXIII and XXV) and the colmedins are similar in that they all have a pair of cysteines in the same location. Moreover, furin cleavage at the NC1 domain can be expected in most of the proteins.  相似文献   

8.
We have studied binding to collagen of the 59-kDa protein present in most connective tissues. Collagen fibril formation, measured as increasing turbidity, was markedly retarded and reduced by the presence of small amounts of this protein. This was true for both collagen I and collagen II. The effect was also observed when pepsin-treated collagens were used, indicating that interaction with the telopeptides is not involved. The proportion of collagen precipitated in the assay was not or only marginally reduced. Thus, the altered optical properties indicate that structurally different fibrils are formed in the presence of the 59-kDa protein. The 59-kDa protein bound to collagen I or collagen II that had been insolubilized on polystyrene 96-well microtiter plates, as measured by enzyme-linked immunosorbent assay. Analogously, binding to the collagens was demonstrated for the PG-S2 low Mr proteoglycan, previously shown only to inhibit collagen fibrillogenesis. The two matrix components showed similar strength of binding, i.e. Kd 35 nM for the 59-kDa protein and 16 nM for PG-S2 at 20 degrees C. The results do not reveal if the collagen interaction site of the 59-kDa protein is different from that of PG-S2. Our observations do, however, suggest that the 59-kDa protein, as well as PG-S2, have functions related to the regulation of collagen organization in tissues.  相似文献   

9.
10.
In the search for stromal-derived growth factors, we have identified a novel secreted short form of immune suppressor factor (ISF) using a combination of a genetic approach and retrovirus-mediated functional screening. This protein, which we termed ShIF, was isolated based on its ability to support proliferation of a mutant clone S21, which was established from Ba/F3 cells that are usually interleukin-3-dependent but became dependent on a stroma cell line ST2 after chemical mutagenesis. ISF, a membrane protein harboring six transmembrane domains, was reported to have immunosuppressive functions. The coding region of ShIF started from the third transmembrane domain of ISF. Biochemical analysis demonstrated that ShIF was expressed in both the secreted and membrane-bound forms of 27-kDa protein, which was supposed to have an internal ATG present in the third transmembrane domain of ISF as a start codon. In addition to the full-length form of ISF, a major protein with a molecular size of 27 kDa was also expressed through the proteolytic process of ISF. ShIF resembles this naturally occurring short form of ISF (sISF). Deletion analysis of the major domains of ISF cDNA revealed that ShIF is an active functional domain of ISF with a capability to support proliferation of S21 cells. Enforced expression of ShIF in MS10 cells, bone marrow stroma cells that do not express endogenous ShIF or ISF, conferred on the cells an ability to support the growth of S21 cells as well as bone marrow cells. Interestingly, ShIF shows a high sequence homology to the C-terminal part of a 95-kDa yeast vacuolar H (+)-ATPase subunit, Vph1p (39%), and a 116-kDa proton pump (VPP1) (54%) of the rat and bovine synaptic vesicle. Therefore, it is possible that ShIF also acts as a proton pump and somehow prevents the cells from undergoing apoptosis.  相似文献   

11.
We previously identified a 90-kDa cell surface glycoprotein, termed the class III collagen receptor (CRIII), that bound to collagen in affinity chromatography experiments (Wayner, E. A., and Carter, W. G. (1987) J. Cell Biol. 105, 1873-1884). Here, we utilize monoclonal antibodies to define three domains of the CRIII, hydrophobic transmembrane, phosphorylated cytoplasmic, and glycosylated extracellular. The domain designations are based on the following characteristics. (i) Differential extraction, phase partitioning with Triton X-114, and incorporation into liposomes all indicate that the CRIII is an intrinsic membrane receptor with a hydrophobic domain. After incorporation into liposomes the CRIII binds collagen. (ii) Immunofluorescence microscopy reveals that most nucleated cells express the CRIII and that after extraction with Triton X-100, the Triton-insoluble CRIII distributes in a fibrillar pattern at the cell periphery and in closed loops that partially co-distributed with vimentin. The CRIII contains phosphoserine residues which are located on a cytoplasmic domain that may interact with the cytoskeleton. (iii) The CRIII contains 25% carbohydrate in 8-10 asparagine-linked carbohydrate chains of 2800 daltons each bound to a 65-kDa core peptide in the extracellular domain. Peptide mapping with trypsin defined a glycosylated 27-kDa extracellular fragment and a phosphorylated and glycosylated 35-kDa transmembrane fragment. These data suggest a model for the CRIII that links the cytoskeleton with the extracellular matrix.  相似文献   

12.
Collagen XIV was isolated from neutral salt extracts of human placenta and purified by several chromatographic steps including affinity binding to heparin. The same procedures also led to the purification of a tissue form of fibronectin. Collagen XIV was demonstrated by partial sequence analysis of its Col1 and Col2 domains and by electron microscopy to be a disulphide-linked molecule with a characteristic cross-shape. The individual chains had a size of approximately 210 kD, which was reduced to approximately 180 kD (domain NC3) after treatment with bacterial collagenase. Specific antibodies mainly to NC3 epitopes were obtained by affinity chromatography and used in tissue and cell analyses by immunoblotting and radioimmunoassays. Two sequences from NC3 were identified on fragments obtained after trypsin cleavage. They were identical to cDNA-derived sequences of undulin, a noncollagenous extracellular matrix protein. This suggests that collagen XIV and undulin may be different splice variants from the same gene. Heparin binding was confirmed in ligand assays with a large basement membrane heparan sulphate proteoglycan. This binding could be inhibited by heparin and heparan sulphate but not by chondroitin sulphate. In addition, collagen XIV bound to the triple helical domain of collagen VI. The interactions with heparin sulphate proteoglycan and collagen VI were not shared by the NC3 domain, or by reduced and alkylated collagen XIV. No or only low binding was observed for collagens I-V, pN- collagens I and III, and several noncollagenous matrix proteins, including laminin, recombinant nidogen, BM-40/osteonectin, plasma and tissue fibronectin, vitronectin, and von Willebrand factor. Insignificant activity was also shown in cell attachment assays with nine established cell lines.  相似文献   

13.
14.
BRCA2 is a tumor suppressor gene that when mutated confers an increased susceptibility to developing breast and prostate carcinoma. Besides its role in mediating DNA repair, new evidence suggests that BRCA2 may also play a role in suppressing cancer cell growth. Because altered interactions between neoplastic cells and the surrounding extracellular matrix (ECM) play a pivotal role in unchecked cancer cell proliferation and metastatic progression, we hypothesized that the ECM may have an effect in BRCA2 expression. By using normal and prostate carcinoma cell lines, we demonstrated that although normal cells transiently increase BRCA2 protein levels when adhering to the ECM protein collagen type I (COL1), carcinoma cells exhibit a significant reduction in BRCA2 protein. This aberrant effect is independent from de novo protein synthesis and results from COL1-beta(1) integrin signaling through phosphatidylinositol (PI) 3-kinase leading to BRCA2 ubiquitination and degradation in the proteasome. BRCA2 protein depletion after cancer cell adhesion to COL1 or in small RNA interference assays triggers new DNA synthesis, a trophic effect that is abrogated by recombinant BRCA2 expression. Blocking or inhibiting beta(1) integrin, PI 3-kinase, or proteasome activity all have a negative effect on COL1-mediated DNA synthesis in cancer cells. In normal cells, the transient increase in BRCA2 expression is independent from beta(1) integrin or PI 3-kinase and has no effect in cell proliferation. In summary, these results unravel a novel mechanism whereby prostate carcinoma cell proliferation is enhanced by the down-regulation of BRCA2 expression when interacting with COL1, a major component of the ECM at osseous metastatic sites.  相似文献   

15.
The mechanism by which the 14-kDa fusion protein of vaccinia virus (VV) is anchored in the envelope of intracellular naked virions (INV) is not understood. In this investigation, we demonstrate that the 14-kDa protein interacts with another virus protein with an apparent molecular mass of 21 kDa. Microsequence analysis of the N terminus of the 21-kDa protein revealed that this protein is encoded by the VV A17L gene. The 21-kDa protein is processed from a 23-kDa precursor, by cleavage at amino acid position 16, at the consensus motif Ala-Gly-Ala, previously identified as a cleavage site for several VV structural proteins. The 21-kDa protein contains two large internal hydrophobic domains characteristic of membrane proteins. Pulse-chase analysis showed that within 1 h after synthesis, the 14-kDa protein forms a stable complex with the 21-kDa protein. Formation of the complex was not inhibited by rifampin, indicating that the interaction between these two proteins occurs prior to virion morphogenesis. Immunoprecipitation analysis of disrupted virions showed the presence of the 21-kDa protein in the viral particle. Release of the 14-kDa-21-kDa protein complex from INV required treatment with the nonionic detergent Nonidet P-40 and a reducing agent. The protein complex consisted of 14-kDa trimers and of 21-kDa dimers. Since the 14-kDa fusion protein lacks a signal sequence and a large hydrophobic domain characteristic of membrane proteins, our findings suggest that the 21-kDa protein serves to anchor the 14-kDa protein to the envelope of INV.  相似文献   

16.
17.
The 180?kDa transmembrane collagen XVII is known to anchor undifferentiated keratinocytes to the basement membrane in hemidesmosomes while constitutively shedding a 120?kDa ectodomain. Inherited mutations or auto-antibodies targeting collagen XVII cause blistering skin disease. Collagen XVII is down-regulated in mature keratinocytes but re-expressed in skin cancer. By recently detecting collagen XVII in melanocyte hyperplasia, here we tested its expression in benign and malignant melanocytic tumors using endodomain and ectodomain selective antibodies. We found the full-length collagen XVII protein in proliferating tissue melanocytes, basal keratinocytes and squamous cell carcinoma whereas resting melanocytes were negative. Furthermore, the cell-residual 60?kDa endodomain was exclusively detected in 62/79 primary and 15/18 metastatic melanomas, 8/9 melanoma cell lines, HT199 metastatic melanoma xenografts and atypical nests in 8/63 dysplastic nevi. The rest of 19 nevi including common, blue and Spitz subtypes were also negative. In line with the defective ectodomain, sequencing of COL17A1 gene revealed aberrations in the ectodomain coding region including point mutations. Collagen XVII immunoreaction-stained spindle cell melanomas, showed partly overlapping profiles with those of S100B, Melan A and HMB45. It was concentrated at vertical melanoma fronts and statistically associated with invasive phenotype. Antibody targeting the extracellular aa507-529 terminus of collagen XVII endodomain promoted apoptosis and cell adhesion, while inhibiting proliferation in HT199 cells. These results suggest that the accumulation of collagen XVII endodomain in melanocytic tumors is associated with malignant transformation to be a potential marker of malignancy and a target for antibody-induced melanoma apoptosis.  相似文献   

18.
To investigate genes involved in cancer metastasis, mRNA differential display was used to compare the levels of gene expression of two cancer sublines derived from prostate carcinoma cell PC-3M that had different metastatic potentials. The differentially expressed genes were confirmed by Northern blot, and sequenced. The full-length cDNA of a tumor metastasis suppressor gene (TMSG-1) was obtained by using EST assembling and verified by RT-PCR and sequencing. The results showed that expression levels of TMSG-1 were lower in the highly metastatic cell line 1E8, compared with the non-metastatic cell line 2B4. The difference was significant. Full-length cDNA of TMSG-1 was about 2 kb, containing an open reading frame that encoded a protein of 230 amino acids. GenBank Blastn showed no marked homology with known genes. The functional prediction of amino acids sequence encoded by TMSG-1 gene indicated TMSG-1 protein was transmembrane protein, with 3 transmembrane domains, 3 putative protein kinase phosphorylatio  相似文献   

19.
20.
Collagen XVII, a type II transmembrane protein and epithelial adhesion molecule, can be proteolytically shed from the cell surface to generate a soluble collagen. Here we investigated the release of the ectodomain and identified the enzymes involved. After surface biotinylation of keratinocytes, the ectodomain was detectable in the medium within minutes and remained stable for >48 h. Shedding was enhanced by phorbol esters and inhibited by metalloprotease inhibitors, including hydroxamates and TIMP-3, but not by inhibitors of other protease classes or by TIMP-2. This profile implicated MMPs or ADAMs as candidate sheddases. MMP-2, MMP-9 and MT1-MMP were excluded, but TACE, ADAM-10 and ADAM-9 were shown to be expressed in keratinocytes and to be actively involved. Transfection with cDNAs for the three ADAMs resulted in increased shedding and, vice versa, in TACE-deficient cells shedding was significantly reduced, indicating that transmembrane collagen XVII represents a novel class of substrates for ADAMs. Functionally, release of the ectodomain of collagen XVII from the cell surface was associated with altered keratinocyte motility in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号