首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have examined the interactions of lac repressor and RNA polymerase with the DNA of the lac control region, using a method for direct visualization of the regions of DNA protected by proteins from DNAase attack. The repressor protects the operator essentially as reported by Gilbert and Maxam (1) with some small modifications. However, the evidence reported here concerning the binding of RNA polymerase to the DNA of the promoter mutant UV5 indicates that : 1) the RNA polymerase molecule binds asymmetrically to the promoter DNA, 2) RNA polymerase protects DNA sequences to within a few bases of the CAP binding site, suggesting direct interaction between polymerase and the CAP protein at this site, 3) RNA polymerase still binds to the promoter when repressor is bound to the operator, but fails to form the same extensive complex.  相似文献   

3.
The osmotic stress technique was used to measure changes in macromolecular hydration that accompany binding of wild-type Escherichia coli lactose (lac) repressor to its regulatory site (operator O1) in the lac promoter and its transfer from site O1 to nonspecific DNA. Binding at O1 is accompanied by the net release of 260 +/- 32 water molecules. If all are released from macromolecular surfaces, this result is consistent with a net reduction of solvent-accessible surface area of 2370 +/- 550 A. This area is only slightly smaller than the macromolecular interface calculated for a crystalline repressor dimer-O1 complex but is significantly smaller than that for the corresponding complex with the symmetrical optimized O(sym) operator. The transfer of repressor from site O1 to nonspecific DNA is accompanied by the net uptake of 93 +/- 10 water molecules. Together these results imply that formation of a nonspecific complex is accompanied by the net release of 165 +/- 43 water molecules. The enhanced stabilities of repressor-DNA complexes with increasing osmolality may contribute to the ability of Escherichia coli cells to tolerate dehydration and/or high external salt concentrations.  相似文献   

4.
Effects of changes in intracellular ion concentrations on the interactions of Escherichia coli lac repressor with lac operator mutants and on the interactions of RNA polymerase with various promoters have been investigated in vivo. The intracellular ionic environment was reproducibly varied by changing the osmolality of the 4-morpholinepropanesulfonic acid minimal growth medium. As the osmolality of the growth medium is varied from 0.1 to 1.1 osmolal, the total intracellular concentration of K+ increases linearly from 0.23 +/- 0.03 to 0.93 +/- 0.05 molal and the total intracellular concentration of glutamate increases linearly from 0.03 +/- 0.01 to 0.26 +/- 0.02 molal. The sum of the changes in the total concentrations of these two ions appears sufficient to compensate for a given change in external osmolality, indicating that K+ and glutamate are the primary ionic osmolytes under these conditions and that these ions are free in the cytoplasm. In support of this, in vivo 39K NMR experiments as a function of external osmolality indicate that changes in the total cytoplasmic K+ concentration correspond to changes in the free cytoplasmic K+ concentration. Extents of interaction of lac repressor and RNA polymerase with their specific DNA sites were monitored by measuring the amounts of beta-galactosidase produced under the control of these sites. For both lac repressor and RNA polymerase, it was found that formation of functional protein-DNA complexes in vivo is only weakly (if at all) dependent on intracellular ion concentration. These results contrast strongly with those obtained on these systems in vitro, which showed that both the equilibria and kinetics of binding are extremely salt-dependent. We discuss several possible mechanisms by which E. coli may compensate for the potentially disruptive effects of these large changes in the intracellular ionic environment.  相似文献   

5.
6.
The kinetics of protein-nucleic acid interactions are discussed with particular emphasis on the effects of salt concentration and valence on the observed rate constants. A general review is given of the use of experimentally determined salt dependences of observed kinetic parameters as a tool to probe the mechanism of interaction. Quantitative analysis of these salt dependences, through the application of polyelectrolyte theory, can be used to distinguish reactions which occur in a single step from those reactions which involve distinct intermediates. For those rate constants which display a large salt dependence, in either the association or dissociation reaction, this is due to the high concentration of counterions (e.g., Na+) in the vicinity of the nucleic acid which are subsequently released (or bound in the case of dissociation) at some point before the rate limiting step of the reaction. A general discussion of other features which affect protein-nucleic acid kinetics, such as nucleic acid length and the ratio of nonspecific to specific DNA binding sites (in the case of sequence specific binding proteins), is also given. The available data on the nucleic acid binding kinetics of small ligands (ions, dyes, oligopeptides), nonspecific binding proteins (T4 gene 32 protein, fd gene 5 and Escherichia coli SSB), and sequence specific binding proteins (lac repressor, RNA polymerase, Eco RI restriction endonuclease) are discussed with emphasis on the interpretation of the experimentally determined salt dependences.  相似文献   

7.
8.
9.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

10.
We analysed complexes formed during recognition of the lacUV5 promoter by E. coli RNA polymerase using formaldehyde as a DNA-protein and protein-protein cross-linking reagent. Most of the cross-linked complexes specific for the open complex (RPO) contain the beta' subunit of RNA polymerase cross-linked with promoter DNA in the regions: -50 to -49; -5 to -10; + 5 to +8 and +18 to +21. The protein-protein cross-linking pattern of contacting subunits is the same for the RNA polymerase in solution and in RPO: there are strong sigma-beta' and beta-beta' interactions. In contrast, only beta-beta' cross-links were detected in the closed (RPC) and intermediate (RPI) complexes. In presence of lac repressor before or after formation of the RPO cross-linking pattern is similar with that of RPI (RPC) complex.  相似文献   

11.
We developed a general method for the enrichment and identification of sequence-specific DNA-binding proteins. A well-characterized protein-DNA interaction is used to isolate from crude cellular extracts or fractions thereof proteins which bind to specific DNA sequences; the method is based solely on this binding property of the proteins. The DNA sequence of interest, cloned adjacent to the lac operator DNA segment is incubated with a lac repressor-beta-galactosidase fusion protein which retains full operator and inducer binding properties. The DNA fragment bound to the lac repressor-beta-galactosidase fusion protein is precipitated by the addition of affinity-purified anti-beta-galactosidase immobilized on beads. This forms an affinity matrix for any proteins which might interact specifically with the DNA sequence cloned adjacent to the lac operator. When incubated with cellular extracts in the presence of excess competitor DNA, any protein(s) which specifically binds to the cloned DNA sequence of interest can be cleanly precipitated. When isopropyl-beta-D-thiogalactopyranoside is added, the lac repressor releases the bound DNA, and thus the protein-DNA complex consisting of the specific restriction fragment and any specific binding protein(s) is released, permitting the identification of the protein by standard biochemical techniques. We demonstrate the utility of this method with the lambda repressor, another well-characterized DNA-binding protein, as a model. In addition, with crude preparations of the yeast mitochondrial RNA polymerase, we identified a 70,000-molecular-weight peptide which binds specifically to the promoter region of the yeast mitochondrial 14S rRNA gene.  相似文献   

12.
In our studies of lac repressor tetramer (T)-lac operator (O) interactions, we observed that the presence of extended regions of non-operator DNA flanking a single lac operator sequence embedded in plasmid DNA produced large and unusual cooperative and anticooperative effects on binding constants (Kobs) and their salt concentration dependences for the formation of 1:1 (TO) and especially 1:2 (TO2) complexes. To explore the origin of this striking behavior we report and analyze binding data on 1:1 (TO) and 1:2 (TO2) complexes between repressor and a single O(sym) operator embedded in 40 bp, 101 bp, and 2514 bp DNA, over very wide ranges of [salt]. We find large interrelated effects of flanking DNA length and [salt] on binding constants (K(TO)obs, K(TO2)obs) and on their [salt]-derivatives, and quantify these effects in terms of the free energy contributions of two wrapping modes, designated local and global. Both local and global wrapping of flanking DNA occur to an increasing extent as [salt] decreases. Global wrapping of plasmid-length DNA is extraordinarily dependent on [salt]. We propose that global wrapping is driven at low salt concentration by the polyelectrolyte effect, and involves a very large number (>/similar 20) of coulombic interactions between DNA phosphates and positively charged groups on lac repressor. Coulombic interactions in the global wrap must involve both the core and the second DNA-binding domain of lac repressor, and result in a complex which is looped by DNA wrapping. The non-coulombic contribution to the free energy of global wrapping is highly unfavorable ( approximately +30-50 kcal mol(-1)), which presumably results from a significant extent of DNA distortion and/or entropic constraints. We propose a structural model for global wrapping, and consider its implications for looping of intervening non-operator DNA in forming a complex between a tetrameric repressor (LacI) and one multi-operator DNA molecule in vivo and in vitro. The existence of DNA wrapping in LacI-DNA interactions motivates the proposal that most if not all DNA binding proteins may have evolved the capability to wrap and thereby organize flanking regions of DNA.  相似文献   

13.
Site-specific DNA binding of architectural protein integration host factor (IHF) is involved in formation of functional multiprotein-DNA assemblies in Escherichia coli, while non-specific binding of IHF and other histone-like proteins serves to structure the nucleoid. Here, we report an isothermal titration calorimetry study of the thermodynamics of binding IHF to a 34 bp fragment composed entirely of the specific H' site from lambda-phage DNA. At low to moderate [K(+)] (60-100 mM), strong competition is observed between specific and non-specific binding as a result of a low specificity ratio (approximately 10(2)) and a very small non-specific site size. In this [K(+)] range, both specific and non-specific binding are enthalpy-driven, with large negative enthalpy, entropy and heat capacity changes and binding constants that are insensitive to [K(+)]. Above 100 mM K(+), only specific binding is observed, and both the binding constant and the magnitudes of enthalpy, entropy and heat capacity changes all decrease strongly with increasing [K(+)]. When interpreted in the context of the structure of the specific complex, the thermodynamics provide compelling evidence for a previously unrecognized design principle by which proteins that form extensive binding interfaces with nucleic acids control binding constants, binding site sizes and effects of temperature and ion concentrations on stability and specificity. We propose that up to 22 of the 23 IHF cationic side-chains that are located within 6 A of DNA phosphate oxygen atoms in the complex, are masked in the absence of DNA by pairing with anionic carboxylate groups in intramolecular salt-bridges (dehydrated ion-pairs). These salt-bridges increase in stability with increasing temperature and decreasing [K(+)]. To explain the unusual thermodynamics of IHF-DNA interactions, we propose that both specific and non-specific binding at low [K(+)] require disruption of salt-bridges (as many as 18 for specific binding) whereupon many of the unmasked charged groups hydrate and the cationic groups interact with DNA. From structural or thermodynamic parallels with IHF, we propose that large-scale coupling of disruption of protein salt-bridges to DNA binding is significant for other large-interface DNA wrapping proteins including the nucleosome, lac repressor core tetramer, RNA polymerase core protein, HU and SSB.  相似文献   

14.
15.
A procedure has been developed which eliminates the commonly observed inactivation of the DNA binding activity of the lac repressor during purification. The operator binding activity of the repressor obtained by this method is 100 +/- 10%. The repressor can be stored frozen indefinitely without losing its affinity for DNA.  相似文献   

16.
17.
18.
The E. coli DNA binding protein lac repressor (LacI) and a derivative with a designed thiol (T334C) were developed as gold nanocrystal conjugates to assess the effects of conjugation on DNA binding function. The designed derivative was engineered with a solvent-accessible thiol to promote oriented conjugation, avoiding obstruction of the DNA-binding domain by the nanocrystal. Analytical ultracentrifugation (AU) and electrophoretic mobility shift assays (EMSA) were used to evaluate the ability of conjugated repressors to bind the natural operator DNA sequence O(1). The results show that LacI does not retain significant DNA binding function when conjugated to gold nanocrystals, presumably because the basic DNA-binding domain is the site for nonspecific conjugation. T334C, with the potential for both directed and nonspecific conjugation, shows enhanced interaction with O(1) when conjugated. Interestingly, the order of component addition is a key factor in producing functional lac repressor conjugates.  相似文献   

19.
20.
The tight-binding I12-X86 lac repressor binds to non-operator DNA in a sequence-specific fashion. Using the DNA of the E. coli I gene we have investigated these sequence-specific interactions and compared them to the operator binding of wild-type repressor. The specific, non-operator DNA interactions are sensitive to the inducer IPTG. One strong binding site in the I gene DNA was found to be one of two expected on the basis of their homology with the lac operator. The binding of I12-X86 repressor to this site was visualized using the footprinting technique, and found to be consistent with an operator-like binding configuration. The protection pattern extends into an adjacent sequence suggesting that two repressor tetramers are bound in tandem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号