首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Prey densities often show fluctuating patterns over various timescales. Focusing on short-term, within-generation fluctuating patterns of local prey availability, we suggest that prey that show synchronized and high-amplitude fluctuations in availability experience decreased risks of predation, but also enhance the maintenance of predator interference hierarchies by affecting the relative foraging success of unequal conspecific interferers. When predators interfere with each other, they forage less intensely on prey, which benefits prey in terms of decreased predation risk. The system hence involves a positive feedback. We thus argue that short-term temporal fluctuations in local prey availability could be an important mechanism behind how interference-structured social predator systems are developed and sustained. The temporal fluctuations also have implications for the phenotypic diversity of predators, and may be involved in speciation processes.  相似文献   

2.
Environmental fluctuations have been proposed to enhance the coexistence of competing phenotypes. Evaluations are here presented on the effects of prey density and short‐term temporal clumping of prey availability on the relative foraging success of unequal interferers in social forager groups of juvenile brown trout Salmo trutta feeding on drifting invertebrate prey (frozen chironomids). Groups of three trout with established linear dominance hierarchies (dominant, intermediate and subordinate) were subjected to three different total numbers of prey, combined with three different levels of temporal clumping of prey arrival, resulting in nine treatment combinations. Higher total number of prey increased the consumption for all dominance ranks, while higher temporal clumping decreased the consumption for the dominant individuals and increased the consumption for the subordinate individuals. The proportion of prey eaten was smaller at high prey numbers. Similarly, there was a trend that increased temporal clumping also decreased the proportion of prey eaten. We conclude that density and temporal clumping of prey contribute to the coexistence of unequal interferers, and that there is a potential positive feedback between prey behaviour and phenotypic coexistence through decreased per capita predation risk for prey that drift synchronously in high densities.  相似文献   

3.
Foraging distributions are thought to be density‐dependent, because animals not only select for a high availability and quality of resources, but also avoid conspecific interference. Since these processes are confounded, their relative importance in shaping foraging distributions remains poorly understood. Here we aimed to rank the contribution of density‐dependent and density‐independent effects on the spatio‐temporal foraging patterns of eurasian oystercatchers. In our intertidal study area, tides caused continuous variation in oystercatcher density, providing an opportunity to disentangle conspecific interference and density‐independent interactions with the food landscape. Spatial distributions were quantified using high‐resolution individual tracking of foraging activity and location. In a model environment that included a realistic reconstruction of both the tides and the benthic food, we tested a family of behaviour‐based optimality models against these tracking data. Density‐independent interactions affected spatial distributions much more strongly than conspecific interference, even in an interference‐prone species like oystercatchers. Spatial distributions were governed by avoidance of bill injury costs, selection for high interference‐free intake rates and a decreasing availability of benthic bivalve prey after their exposure. These density‐independent interactions outweighed interference competition in terms of effect size. We suggest that the bottleneck in our mechanistic understanding of foraging distributions may be primarily the role of density‐independent prey attributes unrelated to intake rates, like damage costs in the case of oystercatchers foraging on perilous prey. At a landscape scale, above the finest inter‐individual distances, effects of conspecific interaction on spatial distributions may have been overemphasised.  相似文献   

4.
Climate and landscape change are expected to significantly affect trophic interactions, which will especially harm top predators such as the golden eagle Aquila chrysaetos. Availability of optimal prey is recognized to influence reproductive success of raptors on a regional scale. For the golden eagle, medium‐sized prey species between 0.5 and 5 kg are widely considered to be optimal prey during the breeding season, whereas smaller and larger species are deemed as energetically sub‐optimal. However, knowledge about the effects of optimal prey availability is still scarce on larger scales. To decrease this apparent knowledge gap, we combined biogeographical information on range margins with information about the foraging behaviour and reproductive success of golden eagles from 67 studies spanning the Northern Hemisphere. We hypothesized that availability of optimal prey will affect foraging behaviour and breeding success and, thus, distribution patterns of the golden eagle not only on a local but also on a continental scale. We correlated the diet breadth quantifying foraging generalism, breeding success and proportions of small (< 0.5 kg), medium (0.5–5 kg) and large‐sized (> 5 kg) prey species within the diet with the minimum distance of the examined eagles to the actual species distribution boundary. Closer to the range edge, we observed decreased proportions of medium‐sized prey species and decreasing breeding success of golden eagles. Diet breadth as well as proportions of small and large‐sized prey species increased, however, towards the range edge. Thus, availability of optimal‐sized prey species seems to be a crucial driver of foraging behaviour, breeding success and distribution of golden eagles on a continental scale. However, underlying effects of landscape characteristics and human influence on optimal prey availability has to be investigated in further large‐scale studies to fully understand the major threats facing the golden eagle and possibly other large terrestrial birds of prey.  相似文献   

5.
Intraguild interactions among carnivores have long held the fascination of ecologists. Ranging from competition to facilitation and coexistence, these interactions and their complex interplay influence everything from species persistence to ecosystem functioning. Yet, the patterns and pathways of such interactions are far from understood in tropical forest systems, particularly across countries in the Global South. Here, we examined the determinants and consequences of competitive interactions between dholes Cuon alpinus and the two large felids (leopards Panthera pardus and tigers Panthera tigris) with which they most commonly co-occur across Asia. Using a combination of traditional and novel data sources (N = 118), we integrate information from spatial, temporal, and dietary niche dimensions. These three species have faced catastrophic declines in their extent of co-occurrence over the past century; most of their source populations are now confined to Protected Areas. Analysis of dyadic interactions between species pairs showed a clear social hierarchy. Tigers were dominant over dholes, although pack strength in dholes helped ameliorate some of these effects; leopards were subordinate to dholes. Population-level spatio-temporal interactions assessed at 25 locations across Asia did not show a clear pattern of overlap or avoidance between species pairs. Diet-profile assessments indicated that wild ungulate biomass consumption by tigers was highest, while leopards consumed more primate and livestock prey as compared to their co-predators. In terms of prey offtake (ratio of wild prey biomass consumed to biomass available), the three species together harvested 0.4–30.2% of available prey, with the highest offtake recorded from the location where the carnivores reach very high densities. When re-examined in the context of prey availability and offtake, locations with low wild prey availability showed spatial avoidance and temporal overlap among the carnivore pairs, and locations with high wild prey availability showed spatial overlap and temporal segregation. Based on these observations, we make predictions for 40 Protected Areas in India where temporally synchronous estimates of predator and prey densities are available. We expect that low prey availability will lead to higher competition, and in extreme cases, to the complete exclusion of one or more species. In Protected Areas with high prey availability, we expect intraguild coexistence and conspecific competition among carnivores, with spill-over to forest-edge habitats and subsequent prey-switching to livestock. We stress that dhole–leopard–tiger co-occurrence across their range is facilitated through an intricate yet fragile balance between prey availability, and intraguild and conspecific competition. Data gaps and limitations notwithstanding, our study shows how insights from fundamental ecology can be of immense utility for applied aspects like large predator conservation and management of human–carnivore interactions. Our findings also highlight potential avenues for future research on tropical carnivores that can broaden current understanding of intraguild competition in forest systems of Asia and beyond.  相似文献   

6.
The coexistence of competing species relies on niche partitioning. Competitive exclusion is likely inevitable at high niche overlap, but such divide between competitors may be bridged if environmental circumstances displace competitor niches to enhance partitioning. Foraging‐niche dimension can be influenced by environmental characteristics, and if competitors react differently to such conditions, coexistence can be facilitated. We here experimentally approach the partitioning effects of environmental conditions by evaluating the influence of water turbulence on foraging‐niche responses in two competing fish species, Eurasian perch Perca fluviatilis and roach Rutilus rutilus, selecting from planktonic and benthic prey. In the absence of turbulence, both fish species showed high selectivity for benthic chironomid larvae. R. rutilus fed almost exclusively on zoobenthos, whereas P. fluviatilis complemented the benthic diet with zooplankton (mainly copepods). In turbulent water, on the other hand, the foraging‐niche widths of both R. rutilus and P. fluviatilis increased, while their diet overlap simultaneously decreased, caused by 20% of the R. rutilus individuals turning to planktonic (mainly bosminids) prey, and by P. fluviatilis increasing foraging on littoral/benthic food sources. We show that moderate physical disturbance of environments, such as turbulence, can enhance niche partitioning and thereby coexistence of competing foragers. Turbulence affects prey but not fish swimming capacities, with consequences for prey‐specific distributions and encounter rates with fish of different foraging strategies (pause‐travel P. fluviatilis and cruise R. rutilus). Water turbulence and prey community structure should hereby affect competitive interaction strengths among fish species, with consequences for coexistence probability as well as community and system compositions.  相似文献   

7.
Although pollinators can play a central role in determining the structure and stability of plant communities, little is known about how their adaptive foraging behaviours at the individual level, e.g. flower constancy, structure these interactions. Here, we construct a mathematical model that integrates individual adaptive foraging behaviour and population dynamics of a community consisting of two plant species and a pollinator species. We find that adaptive foraging at the individual level, as a complementary mechanism to adaptive foraging at the species level, can further enhance the coexistence of plant species through niche partitioning between conspecific pollinators. The stabilizing effect is stronger than that of unbiased generalists when there is also strong competition between plant species over other resources, but less so than that of multiple specialist species. This suggests that adaptive foraging in mutualistic interactions can have a very different impact on the plant community structure from that in predator–prey interactions. In addition, the adaptive behaviour of individual pollinators may cause a sharp regime shift for invading plant species. These results indicate the importance of integrating individual adaptive behaviour and population dynamics for the conservation of native plant communities.  相似文献   

8.
Spatial and temporal heterogeneity is a major factor structuring communities and contributing to coexistence of the species they contain. In this study we examine a critical aspect of environmental heterogeneity that is assumed to promote coexistence in two gerbil species of the Western Negev Desert. Previous studies assumed that temporal partitioning, in activity time, is the result of daily redistribution of seeds that the dominant species is the first to utilize while the sub-ordinate and efficient species is being pushed to use the later and poorer part of the night. We tested the assumption that daily afternoon winds generating spatial and temporal heterogeneity in seed availability by the redistribution of sand and seeds. This was done by comparing plots experiencing normal wind condition with manipulated plots where wind action was diminished by a shade-cloth fence. Our results show that considerable amount of sand and seeds are redistributing regularly on a time scale of a single day. Our results also show that gerbil foraging behavior is strongly related to the pattern of the redistribution dynamics of the seeds. When we prevented redistribution of seeds, gerbil foraging activity was reduced considerably. However, both seed redistribution and gerbil activity did not change much on control plots. Furthermore, the two gerbil species responded differently to the reduction in seed redistribution. The larger Gerbillus pyramidum was shown to be more sensitive to the reduction than the smaller G. a. allenbyi . Daily variability in the availability of seed resources is probably the niche axis which, together with the trade-off in foraging efficiency of the species, forms the mechanism for the coexistence of the two gerbil species in the semi-stabilized sands.  相似文献   

9.
ABSTRACT.   Foraging behavior often reflects food availability, a resource that may increasingly limit breeding birds as intraspecific crowding increases. Measuring foraging behavior, therefore, provides a way to investigate effects of population density on food limitation, an important link in understanding how crowding functions to regulate populations. We quantified three components of foraging behavior (prey attack rate, foraging speed, and relative use of morphologically constrained attack maneuvers) for male Black-throated Blue Warblers ( Dendroica caerulescens ) breeding under experimentally manipulated density conditions. Building on the previous work showing the density of conspecific neighbors affects territory size, reproductive success, and the time budgets of males ( Sillett et al. 2004 , Ecology 85: 2467–2477), we further show that density affects male foraging strategies. Although not differing in attack rate or foraging speed, male Black-throated Blue Warblers on territories with reduced neighbor densities used energetically expensive aerial attack maneuvers significantly less frequently than males in control (high-density) territories during both the incubation period and when provisioning nestlings and fledglings. We conclude that males altered their foraging behavior to compensate for density-related reductions in time available for foraging and that population density may constrain the time available for foraging.  相似文献   

10.
Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species’ populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host–pathogen systems. We adapted an established individual‐based model of host–pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host''s explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life‐history events affect host–pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts’ biological events. However, a temporal mismatch reduced host–pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat‐dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host–pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change.  相似文献   

11.
Understanding species coexistence has been a central question in ecology for decades, and the notion that competing species need to differ in their ecological niche for stable coexistence has dominated. Recent theoretical and empirical work suggests differently. Species can also escape competitive exclusion by being similar, leading to clusters of species with similar traits. This theory has so far only been explored under competition. By combining mathematical and numerical analyses, we reveal that competition and predation are equally capable to promote clusters of similar species in prey–predator communities, their relative importance being modulated by resource availability. We further show that predation has a stabilizing effect on clustering patterns, making the clusters more diverse. Our results merge different ecological theories and bring new light to the emergent neutrality theory by adding the perspective of trophic interactions. These results open new perspectives to the study of trait distributions in ecological interaction networks.  相似文献   

12.
The results of two experiments showed that observation of a trained conspecific Atlantic salmon Salmo salar significantly increased the rate at which naïve hatchery-reared fish accepted novel, live prey items, whereas the presence of an untrained conspecific actually decreased learning rates due to social inhibition. Pre-release training involving exposure of hatchery-reared fish to live prey items in the presence of pre-trained demonstrators would result in a significant enhancement in their foraging success on release and help prevent starvation, which is thought to be one of the principal causes of post-release mortality in hatchery-reared fishes.  相似文献   

13.
The effects of competitor pressure and prey odor on foraging behavior of the rock crab, Cancer irroratus (Say), were investigated. The Jonah crab, Cancer borealis (Stimpson), was chosen as the interspecific competitor because it shares resources with C. irroratus. Four treatments were tested for their effect on foraging: the presence or absence of a competitor and two types of prey odor; body odor (living mussel) and tissue extract (dead mussel tissue). The presence of Jonah crabs did not influence location time, search time, prey size selected, or handling time of the rock crabs. However, rock crabs responded differently to the presence of body odor and tissue extract cues. The presence of extract odor decreased the time to locate prey while increasing the number of prey manipulated and prey size selected. When prey body odor was present, rock crabs displayed less investigative behaviors than in the presence of extract odor, illustrated by reduced location time. Extract odor provided a stronger and more attractive cue than body odor, but increased prey manipulation and search time. Extract odor induced increases in manipulation and searching for prey but canceled out the benefits of decreased location time, resulting in crabs from both treatments displaying similar search times. These elevated behaviors may be associated with foraging for injured and cracked prey or may indicate an area of conspecific feeding.  相似文献   

14.
15.
Non-migratory resident species should be capable of modifying their foraging behavior to accommodate changes in prey abundance and availability associated with a changing environment. Populations that are better adapted to change will have higher foraging success and greater potential for survival in the face of climate change. We studied two species of resident central place foragers from temperate and equatorial regions with differing population trends and prey availability associated to season, the California sea lion (Zalophus californianus) (CSL) whose population is increasing and the endangered Galapagos sea lion (Zalophus wollebaeki) (GSL) whose population is declining. To determine their response to environmental change, we studied and compared their diving behavior using time-depth recorders and satellite location tags and their diet by measuring C and N isotope ratios during a warm and a cold season. Based on latitudinal differences in oceanographic productivity, we hypothesized that the seasonal variation in foraging behavior would differ for these two species. CSL exhibited greater seasonal variability in their foraging behavior as seen in changes to their diving behavior, foraging areas and diet between seasons. Conversely, GSL did not change their diving behavior between seasons, presenting three foraging strategies (shallow, deep and bottom divers) during both. GSL exhibited greater dive and foraging effort than CSL. We suggest that during the warm and less productive season a greater range of foraging behaviors in CSL was associated with greater competition for prey, which relaxed during the cold season when resource availability was greater. GSL foraging specialization suggests that resources are limited throughout the year due to lower primary production and lower seasonal variation in productivity compared to CSL. These latitudinal differences influence their foraging success, pup survival and population growth reflected in contrasting population trends in which CSL are more successful and potentially more resilient to climate change.  相似文献   

16.
Many bird species flock to forage on newly mown grass swards. Several potential benefits are offered by such swards, including increases in prey availability (flush of foliar prey, reduced physical obstruction to surface and soil prey) and a foraging environment with fewer visual obstructions, so allowing predators to be detected more easily. We performed a field experiment using captive Common Starlings Sturnus vulgaris foraging in bottomless enclosures on newly mown swards (within 1 h) and old mown swards (48 h). We performed the experiment during winter months and standardized sward height to exclude other confounding effects in order to determine the temporal benefits of mowing for species foraging on soil invertebrates. We found no differences in the vigilance or time budgets of Starlings foraging on newly or old mown swards. Intake efficiency (prey captured per 100 roots) was greater on newly mown swards, suggesting that Starlings used less energy to obtain their prey on that substrate. It is possible that mowing alters the microclimate of the soil and sward, causing invertebrate availability to decline over time, which causes the lower foraging efficiency. Mowing is a technique often used to manipulate grassland habitats in ecological research; it has recently been advocated as a conservation management tool for wintering bird populations. We suggest that care should be taken when designing such studies to avoid confounding the factors under investigation with temporal changes in prey availability.  相似文献   

17.
A case of local feeding specialization in the European badger (Meles meles), a carnivore species with morphological, physiological and behavioural traits proper to a trophic generalist, is described. For the first time, we report a mammalian species, the European rabbit (Oryctolagus cuniculus), as the preferred prey of badgers. Secondary prey are consumed according to their availability, compensating for temporal fluctuations in the abundance of rabbit kittens. We discuss how both predator (little ability to hunt) and prey (profitability and predictability) features, may favour the observed specialization, as predicted by foraging theory. Badgers show a trend to specialize on different prey in different areas throughout the species range. It is suggested that changes in prey features can reverse the badger feeding strategy at the population level. Such dynamic behavioural responses make difficult to label badgers as generalists or specialists at the species level.  相似文献   

18.
Abstract

Instantaneous sampling was used to describe the ecological niche of yellowheads. Observations began during nesting in 1983 and continued until April 1984. Yellowheads spent on average 90% of their time foraging. As daylength decreased, an increasing proportion of time was spent foraging and a decreasing proportion of time was spent on social activities. When feeding nestlings, females spent significantly more time foraging than did males. Yellowheads spent 75% of their time in the upper understorey and the shaded canopy. There was no difference in the relative use of strata in the two canopy tree species, nor a sexual difference in the time spent in each strata. Yellowheads were entirely insectivorous. Prey items were recorded on 33 occasions; most were lepidopteran larvae. The most common foraging method was surface gleaning, most often on foliage and trunks. Time spent foraging on different substrates varied with tree diameter and tree species. Relative use of different foraging methods changed during the study, as did the types of substrates searched for prey and the proportion of time spent in different strata and at different heights in the forest. Presumably these changes were in response to variations in invertebrate availability.  相似文献   

19.
Amongst raptor species, individuals with specialized diets are commonly observed to have higher reproductive output than those with general diets. A suggested cause is that foraging efficiency benefits accrue to diet specialists. This diet specificity hypothesis thus predicts that diet breadth and reproductive success should be inversely related within species. We highlight, however, that a prey availability hypothesis also makes the same prediction in some circumstances. Hence, when high diet specificity results from high encounter rates with an abundant, preferred prey, then prey availability may affect reproductive success, with diet specialization as an incidental correlate. Using three insular study areas in western Scotland, we examine diet specificity and reproductive success in Golden Eagles Aquila chrysaetos. Diet breadth and breeding productivity were not negatively related in any of our study areas, even though birds with specific diets did tend to have a higher incidence of preferred prey (grouse and lagomorphs) in the diet. Indeed, in two study areas there was evidence that diet generalists had higher breeding productivity. Our results therefore failed to support the diet specificity hypothesis but were consistent with the prey availability hypothesis. We highlight that although many other studies are superficially consistent with the diet specificity hypothesis, our study is not alone in failing to provide support and that the hypothesis does not provide a generic explanation for all relevant results. Diet specificity in predators can be at least partially a response to prey diversity, availability and distribution, and benefits associated with different prey types, so that being a generalist is not necessarily intrinsically disadvantageous. We suggest that the available evidence is more consistent with variation in prey abundance and availability as a more influential factor explaining spatial and temporal variation in breeding productivity of ‘generalist’ species such as the Golden Eagle. Under this argument, prey abundance and availability are the main drivers of variation in reproductive output. Diet specificity is a consequence of variation in prey availability, rather than a substantial cause of variation in reproductive success.  相似文献   

20.
Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator–prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools—having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish ‘peeping’ out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号