首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
During spermatogenesis, germ cells undergo a complex process of cell differentiation and morphological restructuring, which depends on the coordinated expression of different genes. Some vital examples are those involved in cell energy metabolism, namely the genes encoding the E1α subunit of pyruvate dehydrogenase complex: the somatic PDHA1 (X-linked) and the testis-specific PDHA2 (autosomal). There are no data related to the study at the RNA and protein levels of PDHA genes during human spermatogenesis. The present study aimed to describe the mRNA and protein expression patterns of the human PDHA genes during spermatogenesis. Expression profiles of the PDHA1 and PDHA2 genes were characterized using different human tissues and cells. Diploid and haploid germ cells fractions were obtained from testis tissues. The mRNA profiles were analyzed by quantitative RT-PCR, whereas the protein profiles were evaluated by immunohistochemistry, western blotting and two-dimensional electrophoresis. Expression of the PDHA1 gene was found in all somatic cells, whereas expression of PDHA2 gene was restricted to germ cells. The switch from X-linked to autosomic gene expression occurred in spermatocytes. Data suggest the activation of PDHA2 gene expression is most probably a mechanism to ensure the continued expression of the protein, thus allowing germ cell viability and functionality.  相似文献   

3.
4.
5.
In previous work a specific membrane protein with an estimated Mr of 20.1 kDa was purified from rabbit sperm tails and designated as rSMP-B protein. Antibodies were raised against rSMP-B protein and used to isolate and identify the cDNA coding the rSMP-B protein from a rat testis lambda gt11 expression library. The nucleotide sequence of the cDNA was determined in a previous study. Single-stranded 35S-labeled RNA probes were prepared. With the techniques of in situ hybridization, rSMP-B mRNA was detected in spermatids of rat and rabbit testis. The present results support our previous observation that immunization of male rabbits with the rSMP-B protein results in the arrest of spermatogenesis at the spermatid stage. Overall, rSMP-B protein appears to be involved in spermiogenesis, and the synthesis of the mRNA encoding the protein occurs in germ cells during the postmeiotic haploid phase of spermatogenesis.  相似文献   

6.
Sertoli cells (SCs) play a central role in the development of germ cells within functional testes and exhibit varying morphology during spermatogenesis. This present study investigated the seasonal morphological changes in SCs in the reproductive cycle of Pelodiscus sinensis by light microscopy, transmission electron microscopy (TEM), and immunohistochemistry. During hibernation period with the quiescent of spermatogenesis, several autophagosomes were observed inside the SCs, the processes of which retracted. In early spermatogenesis, when the germ cells started to proliferate, the SCs contained numerous lipid droplets instead of autophagosomes. In late spermatogenesis, the SCs processes became very thin and contacted several round/elongated spermatids in pockets. At this time, abundant endoplasmic reticulum and numerous mitochondria were present in the SCs. The organization of the tight junctions and the adherens junctions between the SCs and germ cells also changed during the reproductive cycle. Moreover, SCs were involved in the formation of cytoplasmic bridges, phagophores, and exosome secretions during spermatogenesis. Tubulobulbar complexes (TBC) were also developed by SCs around the nucleus of the spermatid at the time of spermiation. Strong, positive expression of vimentin was noted on the SCs during late spermatogenesis compared with the hibernation stage and the early stage of spermatogenesis. These data provide clear cytological evidence about the seasonal changes in SCs, corresponding with their different roles in germ cells within the Chinese soft‐shelled turtle Pelodiscus sinensis.  相似文献   

7.
Peroxisomes are organelles with main functions in the metabolism of lipids and of reactive oxygen species. Within the testis, they have different functional profiles depending on the cell types. A dysfunction of peroxisomes interferes with regular spermatogenesis and can lead to infertility due to spermatogenic arrest. However, so far only very little is known about the functions of peroxisomes in germ cells. We have therefore analyzed the peroxisomal compartment in germ cells and its alterations during spermatogenesis by fluorescence and electron microscopy as well as by expression profiling of peroxisome-related genes in purified cell populations isolated from mouse testis. We could show that peroxisomes are present in all germ cells of the germinal epithelium. During late spermiogenesis, the peroxisomes form large clusters that are segregated from the spermatozoa into the residual bodies upon release from the germinal epithelium. Germ cells express genes for proteins involved in numerous metabolic pathways of peroxisomes. Based on the expression profile, we conclude that newly identified functions of germ cell peroxisomes are the synthesis of plasmalogens as well as the metabolism of retinoids, polyunsaturated fatty acids and polyamines. Thus, germ cell peroxisomes are involved in the regulation of the homeostasis of signaling molecules regulating spermatogenesis and they contribute to the protection of germ cells against oxidative stress.  相似文献   

8.
9.
Vas (a Drosophila vasa homologue) gene expression pattern in germ cells during oogenesis and spermatogenesis was examined using all genetic females and males of a teleost fish, tilapia. Primordial germ cells (PGC) reach the gonadal anlagen 3 days after hatching (7 days after fertilization), the time when the gonadal anlagen was first formed. Prior to meiosis, no differences in vas RNA are observed in male and female germ cells. In the ovary, vas is expressed strongly in oogonia to diplotene oocytes and becomes localized as patches in auxocytes and then strong signals are uniformly distributed in the cytoplasm of previtellogenic oocytes, followed by a decrease from vitellogenic to postvitellogenic oocytes. In the testis, vas signals are strong in spermatogonia and decrease in early primary spermatocytes. No vas RNA expression is evident in either diplotene primary spermatocytes, secondary spermatocytes, spermatids or spermatozoa. The observed differences in vas RNA expression suggest a differential function of vas in the regulation of meiotic progression of female and male germ cells.  相似文献   

10.
11.
The following stereological parameters of mitochondria were calculated in rat germ cells during the spermatogenesis: volume density of matrix, outer compartment, outer membrane and inner membrane, surface density of outer membrane and inner membrane. They were the basis to calculate the partition coefficient of matrix and partition coefficient of outer compartment. The matrix volume demonstrated a decreasing in mitochondria of germ cells during spermatogenesis. The relative volume of outer compartment was calculated with the intracristal spaces and revealed increasing from spermatogonia to spermatids. The partition coefficient for the matrix significantly decreased. Our observations suggest that transformation of mitochondrial configuration during spermatogenesis and spermiogenesis is the expression of intensive metabolic processes and activity of membrane transport in germ cells.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Premeiotic and postmeiotic (haploid) gene expression during spermatogenesis in the anuran, Xenopus laevis, was studied by analyzing the accumulation of radioactively labelled cytoplasmic polyadenylated [poly (A +)] and non-polyadenylated [poly (A -)] RNAs. Dissociated spermatogenic cells were labelled and maintained in an in vitro system capable of supporting cell differentiation. Labelled cells were separated by density gradient centrifugation into subpopulations enriched for individual spermatogenic stages. RNA was extracted and purified from each cell fraction, and separated into poly (A +) and poly (A -) species. Comparison of poly (A +) to non-poly (A) radioactivity in cells labelled with tritiated uridine or adenosine demonstrated that (1) all cell fractions produced significant quantities of polyadenylated RNA relative to total RNA synthesis; and (2) that a cell fraction enriched for pachytene spermatocyte RNA contained up to 15% of total cytoplasmic and 35% of total polysomal RNA labelled as poly (A +) containing species. RNA was also characterized by sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. All cell types showed typical poly (A -) peaks of 4S, 18S and 28S, corresponding to tRNA (4S) and rRNAs (18, 28S) respectively. Spermatids and spermatozoa had additional absorbance peaks at 13 and 21S which cosedimented with Xenopus oocyte mitochondrial rRNA. Patterns of incorporation of uridine and adenosine into poly (A +) RNA in all germ cell fractions tested were complex. In all cases, major areas of radioactivity were found in a broad band sedimenting between 6-17S. Spermatid fractions showed a prominent peak of incorporation at 6-8S, while pachytene cells also showed heavier poly (A +) peaks in the 17-25S region. A non-polyadenylated RNA species sedimenting at 6-8S with a relatively rapid rate of turnover was also observed in spermatids. From these results it is concluded that synthesis of transfer, ribosomal, and putative messenger RNA species continues in spermatogenic cells throughout all but the very last stages of spermatogenesis in Xenopus.  相似文献   

19.
20.
Identification of a novel male germ cell-specific gene TESF-1 in mice   总被引:7,自引:0,他引:7  
Mammalian spermatogenesis is precisely regulated by many germ cell-specific factors. In search for such a germ cell-specific factor, we have identified a novel mouse gene testis-specific factor 1 (TESF-1). Messenger RNA of TESF-1 was found only in the testis and its expression appeared to be regulated in a developmental manner. Further analysis demonstrated that the expression of TESF-1 was specifically in male germ cells, supported by the observation that we were not able to detect the TESF-1 mRNA from at/at homozygous mutant testes, which lack germ cells. The deduced amino acid sequence of TESF-1 contains a leucine-zipper motif, a potential nuclear localization signal, and two cAMP- and cGMP-dependent protein kinase phosphorylation sites. The green fluorescent protein (GFP)-tagged TESF-1 fusion protein was expressed in COS-7 cells and localized primarily in the nucleus. Taken together, these results indicate that TESF-1 is a novel male germ cell-specific gene, and its protein product may function as a nuclear factor involved in the regulation of spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号