首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paraoxonase 1 (PON1) is a lipo-lactonase which is associated with HDL and possesses antioxidative properties. Diabetes is characterized by increased oxidative stress and by decreased PON1 activity. We aimed to analyze whether oxidative status and PON1 levels in mouse sera and macrophages could affect streptozotocin (STZ)-induced diabetes development. We have used two models of mice under low oxidative stress: STZ-injected apolipoprotein E-deficient mice supplemented with the antioxidant vitamin E, and P47(phox) knockout mice. In both mice models the decreased serum basal oxidative stress, was associated with a decreased rate of diabetes development, compared with control STZ-injected apolipoprotein E-deficient mice or with C57BL mice respectively. These data suggest that oxidative stress accelerates diabetes development. Next, we analyzed the effect of PON1 on macrophage oxidative stress and on diabetes development in STZ-injected C57BL mice, PON1 knockout mice, and PON1 transgenic mice. PON1 overexpression was associated with decreased diabetes-induced macrophage oxidative stress, decreased diabetes development, and decreased mortality, in comparison to C57BL mice, and even more so when compared to PON1KO mice. We thus concluded that on increasing PON1 expression in mice, diabetes development is attenuated, a phenomenon which could be attributed to the antioxidative properties of PON1, as decrement of oxidative stress significantly attenuated STZ-induced diabetes development.  相似文献   

2.
Paraoxonases (PONs) are a family of proteins that may play a significant role in providing relief from both toxic environmental chemicals as well as physiological oxidative stress. Although the physiological roles of the PON family of proteins, PON1, PON2, and PON3, remain unknown, epidemiological, biochemical, and mouse genetic studies of PON1 suggest an anti-atherogenic function for paraoxonases. To determine whether PON2 plays a role in the development of atherosclerosis in vivo, we generated PON2-deficient mice. When challenged with a high fat, high cholesterol diet for 15 weeks, serum levels of high density lipoprotein cholesterol, triglycerides, and glucose were not significantly different between wild-type and PON2-deficient mice. In contrast, serum levels of very low density lipoprotein (VLDL)/low density lipoprotein (LDL) cholesterol were significantly lower (-32%) in PON2-deficient mice compared with wild-type mice. However, despite lower levels of VLDL/LDL cholesterol, mice deficient in PON2 developed significantly larger (2.7-fold) atherosclerotic lesions compared with their wild-type counterparts. Enhanced inflammatory properties of LDL, attenuated anti-atherogenic capacity of high density lipoprotein, and a heightened state of oxidative stress coupled with an exacerbated inflammatory response from PON2-deficient macrophages appear to be the main mechanisms behind the larger atherosclerotic lesions in PON2-deficient mice. These results demonstrate that PON2 plays a protective role in atherosclerosis.  相似文献   

3.
Paraoxonases PON1 and PON3, which are both associated in serum with HDL, protect the serum lipids from oxidation, probably as a result of their ability to hydrolyze specific oxidized lipids. The activity of HDL-associated PON1 seems to involve an activity (phospholipase A2-like activity, peroxidase-like activity, lactonase activity) which produces LPC. To study the possible role of PON1 in macrophage foam cell formation and atherogenesis we used macrophages from control mice, from PON1 knockout mice, and from PON1 transgenic mice. Furthermore, we analyzed PON1-treated macrophages and PON1-transfected cells to demonstrate the contribution of PON1 to the attenuation of macrophage cholesterol and oxidized lipid accumulation and foam cell formation. PON1 was shown to inhibit cholesterol influx [by reducing the formation of oxidized LDL (Ox-LDL), increasing the breakdown of specific oxidized lipids in Ox-LDL, and decreasing macrophage uptake of Ox-LDL]. PON1 also inhibits cholesterol biosynthesis and stimulates HDL-mediated cholesterol efflux from macrophages. PON2 and PON3 protect against oxidative stress, with PON2 acting mainly at the cellular level. Whereas serum PON1 and PON3 were inactivated under oxidative stress, macrophage PON2 expression and activity were increased under oxidative stress, probably as a compensatory mechanism against oxidative stress. Intervention to increase the paraoxonases (cellular and humoral) by dietary or pharmacological means can reduce macrophage foam cell formation and attenuate atherosclerosis development.  相似文献   

4.
PURPOSE OF REVIEW: The paraoxonase family consists of three members (PON1, PON2 and PON3) that share structural properties and enzymatic activities, among which is the ability to hydrolyze oxidized lipids in LDL. The exact function of the different family members is not clear although the conservation among the individual family members across species suggests a strong evolutionary pressure to preserve these functional differences. The purpose of this review is to highlight several problems with respect to the mechanism of action of paraoxonase and differences between the family members that merit further study. RECENT FINDINGS: PON1 transgenic mice are at lower risk for atherosclerosis, which is consistent with PON1 gene knockout studies in mice and human genetic polymorphism studies. The exact mechanism by which paraoxonase is cardioprotective is not clear, although it is likely to be related to its antioxidant properties especially on LDL. PON1 levels are influenced by a variety of environmental factors, including statins and cytokines. The preferential association of PON1 with HDL is mediated in part by its signal peptide and by desorption from the plasma membrane of expressing cells by HDL or phospholipid. Apolipoprotein A-I is not necessary for PON1 association with HDL, but its activity is stabilized in the presence of the apolipoprotein. Only in the absence of both lecithin cholesterol acyltransferase and apolipoprotein E is paraoxonase associated with non-HDL lipoproteins. The displacement of paraoxonase by serum amyloid A may explain in part the proinflammatory nature of HDL in the acute phase. The mechanism by which PON3 associates with HDL has not been studied. In addition to the ability to hydrolyze oxidized lipids in LDL, paraoxonase also alters the oxidative state of macrophages. Exogenous PON1 is able to reverse the oxidative stress in macrophages in aged apolipoprotein E deficient and PON1 deficient mice. The increase in oxidative stress in macrophages from PON1 deficient mice occurs despite the expression of PON2 and PON3 in macrophages. PON1 has recently been shown to contain phospholipase A2 activity, with the subsequent release of lysophosphatidylcholine that influences macrophage cholesterol biosynthesis. SUMMARY: PON1 mass and activity in the plasma significantly influence the risk of developing cardiovascular disease. This is likely mediated by its antioxidation properties on LDL and/or macrophages. The precise mechanism by which this HDL associated protein prevents or attenuates oxidation of LDL and the oxidative stress of macrophages remains to be clarified. The role of PON2 and PON3 in atherosclerosis and their antioxidant properties with respect to LDL and macrophages also merit further investigation.  相似文献   

5.
In vitro studies have suggested that a fraction of human high density lipoprotein (HDL), termed trypanosome lysis factor (TLF), can protect against trypanosome infection. We examined the involvement of two proteins located in the TLF fraction, apolipoprotein A-II (apoA-II) and paraoxonase 1 (PON1), against trypanosome infection. To test whether PON1 is involved in trypanosome resistance, we infected human PON1 transgenic mice, PON1 knockout mice, and wild-type mice with Trypanosoma congolense. When challenged with the same dosage of trypanosomes, mice overexpressing PON1 lived significantly longer than wild-type mice, and mice deficient in PON1 lived significantly shorter. In contrast, mice overexpressing another HDL associated protein, apoA-II, had the same survival as wild-type mice. Together, these data suggest that PON1 provides protection against trypanosome infection. In vitro studies using T. brucei brucei indicated that HDL particles containing PON1 and those depleted of PON1 did not differ in their lysis ability, suggesting that protection by PON1 is indirect. Our data are consistent with an in vivo role of HDL protection against trypanosome infection.  相似文献   

6.
7.
The paraoxonase (PON) family contains three genes (PON1/2/3) that are believed to be involved in the protection against oxidative stress. PON1 and PON3 are circulating in serum attached to high-density lipoprotein fraction (HDL), whereas PON2 is ubiquitously expressed. The intestine is the second major organ that synthesizes lipoproteins; therefore, we examined PON mRNA expression and protein levels in gastrointestinal biopsies from humans, from C57BL6 mice, and from Caco-2 cells, a colon carcinoma-derived cell line that exhibits properties of intestinal epithelium at differentiation. PON 1/2/3 mRNA and proteins were present in human biopsies with variable expression among different gastrointestinal segments. Only PON2 and PON3 were present in mice. All PON mRNA, proteins, and enzymatic activities were present in Caco-2 cells. Oxidation of CaCo-2 cells with ferrum ascorbate had no significant effect on PON mRNA expression, but it increased paraoxonase and lactonase activity, whereas statinase activity was decreased. We showed polarized secretion of PON1 (basolateral) and PON2 (apical) into Caco-2 culture medium, raising the possibility that intestine is capable of producing and releasing PON1 and PON3 to the circulation, whereas PON2 is released at the brush-border membrane to intestinal lumen where it may perform another yet unclear function.  相似文献   

8.
In light of recent conflicting results regarding the antiatherogenic properties of the paraoxonase (PON) multigene family we have reexamined these properties in vitro. The abilities of recombinant human PON1 and PON3 to retard LDL oxidation, prevent macrophage oxidative stress, and promote macrophage cholesterol efflux were investigated. Both PON1 and PON3 retarded the oxidation of LDL; PON1 was significantly more efficient (50 and 100% at 20 microg PON3 and PON1, respectively (P<0.001)). Neither PON1 nor PON3 were able to prevent macrophage oxidative stress; however, both were able to retard macrophage-induced LDL oxidation (100 and 50% at 20 microg/ml respectively for PON1 and PON3, P<0.05). PON3 promoted macrophage cholesterol efflux (30% at 40 microg/ml, P<0.01); however, PON1 was found to be cytotoxic to the macrophages derived from the human monocyte THP-1 cell line. In conclusion using recombinant proteins we have been able to confirm some but not all of the antiatherosclerotic properties attributed to human PON1 and PON3 but have also discovered a novel cytotoxicity of PON1 toward macrophages derived from the human monocytic THP-1 cell line.  相似文献   

9.
Paraoxonases (PON) are a family of proteins (PON1, 2 and 3) with multiple enzymatic activities. PON1 interferes with homoserine lactone-mediated quorum sensing in bacteria and with reactive oxygen species (ROS) in humans and mice. PON1 gene mutations have been linked to multiple traits, including aging, and diseases of the cardiovascular, nervous and gastrointestinal system. The overlapping enzymatic activities in the PON family members and high linkage disequilibrium rates within their polymorphisms confound animal and human studies of PON1 function. In contrast, arthropods such as Drosophila melanogaster have no PON homologs, resulting in an ideal model to study interactions between PON genotype and host phenotypes. We hypothesized that expression of PON1 in D. melanogaster would alter ROS. We found that PON1 alters expression of multiple oxidative stress genes and decreases superoxide anion levels in normal and germ-free D. melanogaster. We also found differences in the composition of the gut microbiota, with a remarkable increase in levels of Lactobacillus plantarum and associated changes in expression of antimicrobial and cuticle-related genes. PON1 expression directly decreased superoxide anion levels and altered bacterial colonization of the gut and its gene expression profile, highlighting the complex nature of the interaction between host genotype and gut microbiota. We speculate that the interaction between some genotypes and human diseases may be mediated by the presence of certain gut bacteria that can induce specific immune responses in the gut and other host tissues.  相似文献   

10.
IntroductionParaoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated lactonase, which is known for its antiatherogenic properties. Previous studies in PON1 knockout (PON1KO) mice revealed that PON1KO mice have low blood pressure, which is inversely correlated with the renal levels of the cytochrome P450 -derived arachidonic acid metabolite 5,6-epoxyeicosatrienoic acid (5,6-EET). Our previous studies revealed that 5,6-EET is unstable, transforming to the δ-lactone isomer 5,6-δ-DHTL, an endothelium-derived hyperpolarizing factor (EDHF) that mediates vasodilation, and it is a potential substrate for PON1.AimTo elucidate the role of PON1 in the modulation of vascular resistance via the regulation of the lactone-containing metabolite 5,6-δ-DHTL.ResultsIn mouse resistance arteries, PON1 was found to be present and active in the endothelial layer. Vascular reactivity experiments revealed that 5,6-δ-DHTL dose-dependently dilates PON1KO mouse mesenteric arteries significantly more than wild type (w.t.) resistance arteries. Pre-incubation with HDL or rePON1 reduced 5,6-δ-DHTL-dependent vasodilation. FACS analyses and confocal microscopy experiments revealed that fluorescence-tagged rePON1 penetrates into human endothelial cells' (ECs') in both dose- and time- dependent manner, accumulate in the perinuclear compartment, and retains its lactonase activity in the cells. The presence of rePON1, but not the presence of PON1 loss-of-lactonase-activity mutant, reduced the Ca2+ influx in the ECs mediated by 5,6-δ-DHTL.ConclusionPON1 lactonase activity in the endothelium affects vascular dilation by regulating Ca2+ influx mediated by the lactone-containing EDHF 5,6-δ-DHTL.  相似文献   

11.
Siah proteins function as E3 ubiquitin ligase enzymes to target the degradation of diverse protein substrates. To characterize the physiological roles of Siah2, we have generated and analyzed Siah2 mutant mice. In contrast to Siah1a knockout mice, which are growth retarded and exhibit defects in spermatogenesis, Siah2 mutant mice are fertile and largely phenotypically normal. While previous studies implicate Siah2 in the regulation of TRAF2, Vav1, OBF-1, and DCC, we find that a variety of responses mediated by these proteins are unaffected by loss of Siah2. However, we have identified an expansion of myeloid progenitor cells in the bone marrow of Siah2 mutant mice. Consistent with this, we show that Siah2 mutant bone marrow produces more osteoclasts in vitro than wild-type bone marrow. The observation that combined Siah2 and Siah1a mutation causes embryonic and neonatal lethality demonstrates that the highly homologous Siah proteins have partially overlapping functions in vivo.  相似文献   

12.

Background

Paraoxonase 1 (PON1) is a protein found associated with high density lipoprotein (HDL), thought to prevent oxidative modification of low-density lipoprotein (LDL). This enzyme has been implicated in lowering the risk of cardiovascular disease. Anoxia-reoxygenation and oxidative stress are important elements in cardiovascular and cerebrovascular disease. However, the role of PON1 in anoxia-reoxygenation or anoxic injury is unclear. We hypothesize that PON1 prevents anoxia-reoxygenation injury. We set out to determine whether PON1 expression in Drosophila melanogaster protects against anoxia-reoxygenation (A-R) induced injury.

Methods

Wild type (WT) and transgenic PON1 flies were exposed to anoxia (100% Nitrogen) for different time intervals (from 1 to 24 hours). After the anoxic period, flies were placed in room air for reoxygenation. Activity and survival of flies was then recorded.

Results

Within 5 minutes of anoxia, all flies fell into a stupor state. After reoxygenation, survivor flies resumed activity with some delay. Interestingly, transgenic flies recovered from stupor later than WT. PON1 transgenic flies had a significant survival advantage after A-R stress compared with WT. The protection conferred by PON1 expression was present regardless of the age or dietary restriction. Furthermore, PON1 expression exclusively in CNS conferred protection.

Conclusion

Our results support the hypothesis that PON1 has a protective role in anoxia-reoxygenation injury, and its expression in the CNS is sufficient and necessary to provide a 100% survival protection.  相似文献   

13.
Human serum paraoxonase (PON1), an HDL-associated esterase, protects lipoproteins against oxidation, probably by hydrolyzing specific lipid peroxides. As arterial macrophages play a key role in oxidative stress in early atherogenesis, the aim of the present study was to examine the effect of PON1 on macrophage oxidative stress. For this purpose we used mouse arterial and peritoneal macrophages (MPM) that were harvested from two populations of PON1 knockout (KO) mice: one on the genetic background of C57BL/6J (PON1(0)) and the other one on the genetic background of apolipoproteinE KO (PON1(0)/E(0)). Serum and LDL, but not HDL, lipids peroxidation was increased in PON1(0), compared to C57BL/6J mice, by 84% and by 220%, respectively. Increased oxidative stress was shown in peritoneal and in arterial macrophages derived from either PON1(0) or PON1(0)/E(0) mice, compared to their appropriate controls. Macrophage oxidative stress was expressed by increased lipid peroxides content in MPM from PON1(0) and from PON1(0)/E(0) mice by 48% and by 80%, respectively, and by decreased reduced glutathione (GSH) content, compared to the appropriate controls. Furthermore, increased capacity of MPM from PON1(0) and PON1(0)/E(0) mice to oxidize LDL (by 40% and by 19%, respectively) and to release superoxide anions was observed. In accordance with these results, PON1(0) mice MPM exhibited 130% increased translocation of the cytosolic p47phox component of NADPH-oxidase to the macrophage plasma membrane, suggesting increased activation of macrophage NADPH-oxidase in PON1(0) mice, compared to control mice MPM. The increase in oxidative stress in PON1-deficient mice was observed despite the presence of the two other members of the PON gene family. PON2 and PON3 activities and mRNA expression were both found to be present in PON1-deficient mice MPM. Upon incubation of PON1(0)/E(0) derived macrophages with human PON1 (7.5 arylesterase units/ml), cellular peroxides content was decreased by 18%, macrophage superoxide anion release was decreased by 33%, and macrophage-mediated oxidation of LDL was reduced by 22%. Finally, a 42% increase in the atherosclerotic lesion area was observed in PON1(0)/E(0) mice, in comparison to E(0) mice under regular chow diet. We thus concluded that PON1 can directly reduce oxidative stress in macrophages and in serum, and that PON1-deficiency results in increased oxidative stress not only in serum, but also in macrophages, a phenomenon that can contribute to the accelerated atherosclerosis shown in PON1-deficient mice.  相似文献   

14.
15.
PURPOSE OF REVIEW: To summarize the new articles published in the last year on paraoxonases, including their expression in cardiovascular diseases, and regulation by pharmacological and nutritional means. RECENT FINDINGS: The elucidation of the crystal structure of the paraoxonase 1 (PON1) gene, obtained by directed evolution, shows that it consists of a six-bladed beta-propeller with a unique active site. PON1 is present in HDL but also in lipoprotein-deficient serum, in VLDL and in chylomicrons. PON1 protects lipids in lipoproteins, in macrophages and in erythrocytes from oxidation. Cellular PON2 and PON3 were also shown to reduce oxidative stress. Beyond its antioxidative properties, PON1 possesses additional antiatherogenic properties against macrophage foam cell formation: attenuation of cholesterol and oxidized lipids influx, inhibition of macrophage cholesterol biosynthesis and stimulation of macrophage cholesterol efflux. The PON1 gene is regulated by Sp1 and protein kinase C, whereas the PON2 gene in macrophages is regulated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. PON1 activity and mass are both reduced in cardiovascular diseases and the hypocholesterolemic drugs, statins, increase serum PON1 activity (by reducing oxidative stress, or by upregulating hepatic PON1 expression). Expression of cellular PON2, like PON1, was upregulated by statins. Nutritional antioxidants, such as polyphenols, increase PON1 mRNA expression and activity, by an aryl hydrocarbon receptor-dependent mechanism. SUMMARY: The elucidation of PON1 structure and its active center has enabled a better understanding of its mechanism of action, including its physio-pathological substrate(s). Some drugs and nutrients including dietary antioxidants and polyphenols considerably increase the activities of paraoxonases which, in turn, can reduce oxidative stress and atherosclerosis development.  相似文献   

16.
In mammals, serum paraoxonase (PON1) is tightly associated with high-density lipoprotein (HDL) particles. In human populations, PON1 exhibits a substrate dependent activity polymorphism determined by an Arg/Gln (R/Q) substitution at amino acid residue 192. The physiological role of this protein appears to be involvement in the metabolism of oxidized lipids. Several studies have suggested that the PON1R192 allele may be a risk factor in coronary artery disease. PON1 also plays an important role in the metabolism of organophosphates including insecticides and nerve agents. The PON1R192 isoform hydrolyzes paraoxon rapidly, but diazoxon, soman and sarin slowly compared with the PON1Q192 isoform. Both PON1 isoforms hydrolyze phenylacetate at approximately the same rate, while PON1R192 hydrolyzes chlorpyrifos oxon slightly faster than PONQ192. Animal model studies involving injection of purified rabbit PON1 into mice clearly demonstrated the ability of PON1 to protect cholinesterases from inhibition by OP compounds. The consequence of having low PON1 levels has been addressed with toxicology studies in PON1 knockout mice. These mice showed dramatically increased sensitivity to chlorpyrifos oxon, diazoxon and some increased sensitivity to the respective parent compounds. These observations are consistent with earlier studies that showed a good correlation between high rates of OP hydrolysis by serum PON1 and resistance to specific OP compounds. They are also consistent with the observations that newborns have an increased sensitivity to OP toxicity, due in part to their not expressing adult PON1 levels for weeks to months after birth, depending on the species. Together, these studies point out the importance of considering the genetic variability of PON1192 isoforms and levels as well as the developmental time course of PON1 appearance in serum in developing risk assessment models  相似文献   

17.
Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson''s disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2.  相似文献   

18.
MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1’s role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1?/? mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. This is an factual error as written; however, total oxygen consumption was decreased. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1?/? hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2’s regulation of mitochondrial function.  相似文献   

19.
Aromatase transgenic mice exhibit hyperplastic and dysplastic changes, attesting to the importance of local estrogen in breast carcinogenesis. These mice also show increased levels of the estrogen receptor and β (ER, ERβ) suggesting that this receptor may play an important role in the initiation of estrogen-mediated mammary hyperplasia observed in these mice. To address the specific role of ER in the mammary development and in the induction of estrogen-mediated hyperplasia in aromatase transgenic mice, we have generated MMTV-aromatase × ER knockout cross (referred as aromatase/ERKO). Even though ERβ is expressed in aromatase/ERKO mice, lack of ER leads to impaired mammary growth in these mice. The data suggest that ER plays an important role in the mammary gland development as well as in the induction of mammary hyperplasia in aromatase transgenic mice. Lack of ER expression in the aromatase/ERKO mice resulted in a decrease in the expression of Cyclin D1, PCNA and TGFβ relative to the aromatase parental strain. The studies involving aromatase/ERKO mice show that lack of ER results in impaired mammary development even in the presence of continuous tissue estrogen, suggesting estrogen/ER-mediated actions are critical for mammary development and carcinogenesis.  相似文献   

20.
Proteins that regulate the coagulation cascade, including thrombin, are elevated in the brains of Alzheimer's disease (AD) patients. While studies using amyloid-based AD transgenic mouse models have implicated thrombin as a protein of interest, the role of thrombin in tau-based animal models has not been explored. The current study aims to determine how inhibiting thrombin could alter oxidative stress, inflammation, and AD-related proteins in a tau-based mouse model, the Tg4510. Aged Tg4510 mice were treated with the direct thrombin inhibitor dabigatran or vehicle for 7 days, brains collected, and western blot and data-independent proteomics using mass spectrometry with SWATH-MS acquisition performed to evaluate proteins related to oxidative stress, intracellular signaling, inflammation, and AD pathology. Dabigatran reduced iNOS, NOX4, and phosphorylation of tau (S396, S416). Additionally, dabigatran treatment increased expression of several signaling proteins related to cell survival and synaptic function. Increasing evidence supports a chronic procoagulant state in AD, highlighting a possible pathogenic role for thrombin. Our data demonstrate that inhibiting thrombin produces alterations in the expression of proteins involved in oxidative stress, inflammation, and AD-related pathology, suggesting that thrombin-mediated signaling affects multiple AD-related pathways providing a potential future therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号