首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial genome of Bewick's swan Cygnus columbianus bewickii was completely sequenced and then the resultant data were compared with those of the whistling swan Cygnus columbianus columbianus. The complete mitochondrial genome sequence of C. c. bewickii was 16,727?bp in length and its gene arrangement pattern, gene content, and genome organization were identical to those of Cygnus species. The similarities of nucleotide and amino acid sequences between the two swans were 99.1% and 99.6%, respectively. Out of the 13 protein-coding genes and 2 rRNA genes, COIII showed the lowest nucleotide sequence similarity with 98.0%. On the other hand, in amino acid sequence similarities, both COII and ATP6 showed the lowest with 98.7% in common. The control region has the 97.8% nucleotide sequence similarity.  相似文献   

2.
The complete sequence of the mitochondrial (mt) genome of Buteo buteo was determined. Its gene content and nucleotide composition are typical for avian genomes. Due to expanded noncoding sequences, Buteo possesses the longest mt genome sequenced so far (18,674 bp). The gene order comprising the control region and neighboring genes is identical to that of Falco peregrinus, suggesting that the corresponding rearrangement occurred before the falconid/accipitrid split. Phylogenetic analyses performed with the mt sequence of Buteo and nine other mt genomes suggest that for investigations at higher taxonomic levels (e.g., avian orders), concatenated rRNA and tRNA gene sequences are more informative than protein gene sequences with respect to resolution and bootstrap support. Phylogenetic analyses indicate an early split between Accipitridae and Falconidae, which, according to molecular dating of other avian divergence times, can be assumed to have taken place in the late Cretaceous 65-83 MYA.  相似文献   

3.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

4.
The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii . The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii , but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.  相似文献   

5.
The Baikal teal Anas formosa (Aves, Anseriformes, Anatidae) is classified as "Vulnerable" on the IUCN Red List. Here, whole mitochondrial genome of A. formosa was amplified and sequenced. The total length of the Baikal teal mitochondrial genome is 16,594?bp, which consists of 13 protein-coding, 2 rRNA, 22 tRNA genes and 1 control region. The characteristics of the mitochondrial genomes were analyzed and discussed in detail.  相似文献   

6.
A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb) includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest.  相似文献   

7.
Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome.  相似文献   

8.
Buffalograss (Buchlo? dactyloides (Nutt.) Englem), a C4 turfgrass species, is native to the Great Plains region of North America. The evolutionary implications of buffalograss are unclear. Sequencing of rbcL and matK genes from plastid and the cob gene from mitochondrial genomes was examined to elucidate buffalo grass evolution. This study is the first to report sequencing of these genes from organelle genomes in the genus Buchlo?. Comparisons of sequence data from the mitochondrial and plastid genome revealed that all genotypes contained the same cytoplasmic origin. There were some rearrangements detected in mitochondrial genome. The buffalograss genome appears to have evolved through the rearrangements of convergent subgenomic domains. Combined analyses of plastid genes suggest that the evolutionary process in Buchlo? accessions studied was monophyletic rather than polyphyletic. However, since plastid and mitochondrial genomes are generally uniparentally inherited, the evolutionary history of these genomes may not reflect the evolutionary history of the organism, especially in a species in which out-crossing is common. The sequence information obtained from this study can be used as a genome-specific marker for investigation of the buffalograss polyploidy complex and testing of the mode of plastid and mitochondrial transmission in genus Buchlo?.  相似文献   

9.
ABSTRACT: BACKGROUND: Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS) is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF) created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. RESULTS: Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3kb, similarity >99.9%). It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size) that are non-syntenic to normal-type genome, and the gene orf138 was found to be located at the edge of the largest unique region. Blast analysis performed to assign the unique regions showed that about 80% of the region was covered by short homologous sequences to the mitochondrial sequences of normal-type radish or other reported Brassicaceae species, although no homology was found for the remaining 20% of sequences. CONCLUSIONS: Ogura-type mitochondrial genome was highly rearranged compared with the normal-type genome by recombination through one large repeat and multiple short repeats. The rearrangement has produced four unique regions in Ogura-type mitochondrial genome, and most of the unique regions are composed of known Brassicaceae mitochondrial sequences. This suggests that the regions unique to the Ogura-type genome were generated by integration and shuffling of pre-existing mitochondrial sequences during the evolution of Brassicaceae, and novel genes such as orf138 could have been created by the shuffling process of mitochondrial genome.  相似文献   

10.
Uda K  Komeda Y  Koyama H  Koga K  Fujita T  Iwasaki N  Suzuki T 《Gene》2011,476(1-2):27-37
Precious coral are taxonomically a group of corals that belong to the family Coralliidae within the order Alcyonacea, subclass Octocorallia, and class Anthozoa, whose skeletal axes are used for jewelry. They are distributed in the Mediterranean Sea and in waters adjacent to Japan, Taiwan, Midway Island and the Hawaiian Islands. The genus Corallium of the family Coralliidae was recently divided into two genera, Corallium and Paracorallium, based on morphological observations, but insufficient molecular evidence to support this classification has been presented to date. We determined for the first time the complete mitochondrial genome sequence of two precious corals P. japonicum and C. konojoi, in order to clarify their systematic positions. The circular mitochondrial genomes of P. japonicum and C. konojoi are 18,913bp and 18,969bp in length, respectively, and encode 13 typical energy pathway protein coding genes (nad1-6, nad4L, cox1-3, cob, atp6 and atp8), two ribosomal RNA genes (rns and rnl), a transfer RNA (trnM) and a mismatch repair gene homologue msh1. The two genomes have an overall nucleotide sequence identity of 97.5%, which is comparable to that between Acanella eburnea and Keratoisidinae sp. belonging to Octocorallia. Surprisingly, however, their gene arrangements were not identical. Phylogenetic analyses using seven complete mitochondrial genome sequences belonging to species in the subclass Octocorallia indicated that within the subclass, at least three gene order rearrangement events occurred during evolution. Our results support the validity of the morphological classification that separated the family Coralliidae into two genera, Corallium and Paracorallium.  相似文献   

11.
Eimeria spp. contain at least four genomes. The nuclear genome is best studied in the avian species Eimeria tenella and comprises about 60 Mbp DNA contained within ca. 14 chromosomes; other avian and lupine species appear to possess a nuclear genome of similar size. In addition, sequence data and hybridisation studies have provided direct evidence for extrachromosomal mitochondrial and plastid DNA genomes, and double-stranded RNA segments have also been described. The unique phenotype of "precocious" development that characterises some selected lines of Eimeria spp. not only provides the basis for the first generation of live attenuated vaccines, but offers a significant entrée into studies on the regulation of an apicomplexan life-cycle. With a view to identifying loci implicated in the trait of precocious development, a genetic linkage map of the genome of E. tenella is being constructed in this laboratory from analyses of the inheritance of over 400 polymorphic DNA markers in the progeny of a cross between complementary drug-resistant and precocious parents. Other projects that impinge directly or indirectly on the genome and/or genetics of Eimeria spp. are currently in progress in several laboratories, and include the derivation of expressed sequence tag data and the development of ancillary technologies such as transfection techniques. No large-scale genomic DNA sequencing projects have been reported.  相似文献   

12.
13.
Mitochondrial DNA (mtDNA), as a model sys-tem, has been extensively used for molecular phy-logenetic and evolutionary analysis[1]. With the ad-vances in DNA sequencing technology, more andmore researchers prefer to use complete mitochondrialgenome for phylogenetic analysis[2—4]. Since the com-plete sequencing of human mtDNA in 1981 (Andersonet al., 1981)[5], 342 vertebrate mitochondrial genomeshave so far been sequenced. Up to now the completesequences of 29 avian mitochondrial genomes h…  相似文献   

14.
Mitochondrial genomes are useful tools for inferring evolutionary history. However, many taxa are poorly represented by available data. Thus, to further understand the phylogenetic potential of complete mitochondrial genome sequence data in Annelida (segmented worms), we examined the complete mitochondrial sequence for Clymenella torquata (Maldanidae) and an estimated 80% of the sequence of Riftia pachyptila (Siboglinidae). These genomes have remarkably similar gene orders to previously published annelid genomes, suggesting that gene order is conserved across annelids. This result is interesting, given the high variation seen in the closely related Mollusca and Brachiopoda. Phylogenetic analyses of DNA sequence, amino acid sequence, and gene order all support the recent hypothesis that Sipuncula and Annelida are closely related. Our findings suggest that gene order data is of limited utility in annelids but that sequence data holds promise. Additionally, these genomes show AT bias (approximately 66%) and codon usage biases but have a typical gene complement for bilaterian mitochondrial genomes.  相似文献   

15.
Chicken repeat 1 (CR1) is a member of the non-long terminal repeat class of retrotransposons. We have isolated a truncated CR1 element within the third intron of the lactate dehydrogenase B gene of the coscoroba and the Cape Barren goose (Anseriformes; Coscoroba coscoroba, Cereopsis novaehollandiae). Because the element was absent in orthologous loci within mallard (Anas platyrhynchos), snow goose (Anser caerulescens), and tundra swan (Cygnus columbianus), it provides strong support to the recent novel proposal by Donne-Goussé et al. [Donne-Goussé, C., Laudet, V., H?nni, C., 2002. A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Mol. Phylogenet. Evol. 23, 339-356] that Cape Barren goose is the sister taxon to coscoroba. The time of insertion was approximately 10.5 Mya or less estimated from mitochondrial DNA sequence information. Because this is a recent event, the DNA sequence of this CR1 should be close to that existing at the time of its insertion. This is reflected by the consistency of several structural features expected in a new CR1 copy such as the unaltered flanking target site duplication and inverted repeats that lie 22 bp apart near the 3' end of the element. Hybridization experiments show that numerous copies of sequences closely related to the coscoroba CR1 element are dispersed throughout the genomes of tested Anseriformes, but none were detected in representatives of Galliformes and Struthioniformes.  相似文献   

16.
Venetis C  Theologidis I  Zouros E  Rodakis GC 《Gene》2007,406(1-2):79-90
Species of the marine mussel genus Mytilus are known to contain two mitochondrial genomes, one transmitted maternally (the F genome) and the other paternally (the M genome). The two genomes have diverged by more than 20% in DNA sequence. Here we present the complete sequence of a third genome, genome C, which we found in the sperm of a Mytilus galloprovincialis male. The coding part of the new genome resembles in sequence the F genome, from which it differs by about 2% on average, but differs from the M genome by as much as the F from the M. Its major control region (CR) is more than three times larger than that of the F or the M genome and consists of repeated sequence domains of the CR of the M genome flanked by domains of the CR of the F genome. We present a sequence of events that reconstruct most parsimoniously the derivation of the C genome from the F and M genomes. The sequence consists of a duplication of CR elements of the M genome and subsequent insertion of these tandemly repeated elements in the F genome by recombination. The fact that the C genome was found as the only mitochondrial genome in the sperm of the male from which it was extracted suggests that it is transmitted paternally.  相似文献   

17.
张乃心  张玉娟  余果  陈斌 《昆虫学报》2013,56(4):398-407
研究双翅目昆虫线粒体基因组的结构特点, 并设计其测序的通用引物, 为今后双翅目昆虫线粒体基因组的研究提供参考和依据。利用比较基因组学和生物信息学方法, 分析了已经完全测序的26个双翅目昆虫线粒体基因组的结构特点、 碱基组成和保守区, 并据此设计了双翅目昆虫基因组测序的通用引物。结果表明: 双翅目昆虫线粒体基因组长14 503~19 517 bp, 其结构保守, 含有37个编码基因, 包括13个蛋白质编码基因, 22个tRNA编码基因和2个rRNA编码基因, 此外还包含一段长度差异很大的非编码区(AT富含区)。基因组内基因排列次序稳定, 除个别基因外, 其余都与黑腹果蝇Drosophila melanogaster基因排列次序一致。基因组的碱基组成不均衡, AT含量在72.59%~85.15%之间, 碱基使用存在偏向性, 偏好使用AC碱基。全基因组的核苷酸和氨基酸序列保守, 共鉴定了11个保守区。在保守区内共设计了26对双翅目线粒体基因组测序通用引物, 扩增的目标片段都在1 200 bp以内。将该套通用引物用于葱蝇Delia antiqua线粒体全基因组测序, 结果证明其高效、 合用。  相似文献   

18.
Here we report the sequence of three mitochondrial genomes from yeasts of the Nakaseomyces clade that includes the pathogenic yeast Candida glabrata , namely, that of Kluyveromyces delphensis, Candida castellii and Kluyveromyces bacillisporus . The gene content is equivalent to that of C. glabrata , but reveals the existence of new group I introns in COX1 and CYTB and new potential intronic endonucleases. Gene order is highly rearranged in these genomes, which contain numerous palindromic GC clusters. The more GC nucleotides these elements contain, the longer and more AT-rich are the intergenes containing them, leading to a direct relationship between the number of Gs and Cs within the elements and the size of the genomes. Thus, there is a fivefold difference in size between the smallest and the largest mitochondrial genome, with the largest being the most AT-rich overall. Sequences are available under EMBL accession numbers FM995164 , FM995165 , and FM995166 .  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号