首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isthmic organizer, which is located at the midbrain-hindbrain boundary, plays an essential role in development of the midbrain and anterior hindbrain. It has been shown that homeobox genes regulate establishment of the isthmic organizer, but the mechanism by which the organizer is maintained is not well understood. Here, we found that, in mice doubly mutant for the basic helix-loop-helix genes Hes1 and Hes3, the midbrain and anterior hindbrain structures are missing without any significant cell death. In these mutants, the isthmic organizer cells prematurely differentiate into neurons and terminate expression of secreting molecules such as Fgf8 and Wnt1 and the paired box genes Pax2/5, all of which are essential for the isthmic organizer function. These results indicate that Hes1 and Hes3 prevent premature differentiation and maintain the organizer activity of the isthmic cells, thereby regulating the development of the midbrain and anterior hindbrain.  相似文献   

2.
Fibroblast growth factors (FGFs) are signaling molecules of the isthmic organizer, which regulates development of the midbrain and cerebellum. Tissue-specific inactivation of one of the FGF receptor (FGFR) genes, Fgfr1, in the midbrain and rhombomere 1 of the hindbrain of mouse embryos results in deletion of the inferior colliculi in the posterior midbrain and vermis of the cerebellum. Analyses of both midbrain-hindbrain and midbrain-specific Fgfr1 mutants suggest that after establishment of the isthmic organizer, FGFR1 is needed for continued response to the isthmic signals, and that it has direct functions on both sides of the organizer. In addition, FGFR1 appears to modify cell adhesion properties critical for maintaining a coherent organizing center. This may be achieved by regulating expression of specific cell-adhesion molecules at the midbrain-hindbrain border.  相似文献   

3.
The most studied secondary neural organizer is the isthmic organizer, which is localized at the mid-hindbrain transition of the neural tube and controls the anterior hindbrain and midbrain regionalization. Otx2 and Gbx2 expressions are fundamental for positioning the organizer and the establishment of molecular interactions that induce Fgf8. We present here evidences demonstrating that Otx2 and Gbx2 have an overlapping expression in the isthmic region. This area is the transversal domain where expression of Fgf8 is induced. The Fgf8 protein produced in the isthmus stabilizes and up-regulates Gbx2 expression, which, in turn, down-regulates Otx2 expression. The inductive effect of the Gbx2/Otx2 limit keeps Fgf8 expression stable and thus maintains its positive role in the expression of Pax2, En1,2 and Wnt1.  相似文献   

4.
We have identified a novel Iroquois (Iro) gene, iro7, in zebrafish. iro7 is expressed during gastrulation along with iro1 in a compartment of the dorsal ectoderm that includes the prospective midbrain-hindbrain domain, the adjacent neural crest and the trigeminal placodes in the epidermis. The iro1 and iro7 expression domain is expanded in headless and masterblind mutants, which are characterized by exaggerated Wnt signaling. Early expansion of iro1 and iro7 expression in these mutants correlates with expansion of the midbrain-hindbrain boundary (MHB) domain, the neural crest and trigeminal neurons, raising the possibility that iro1 and iro7 have a role in determination of these ectodermal derivatives. A knockdown of iro7 function revealed that iro7 is essential for the determination of neurons in the trigeminal placode. In addition, a knockdown of both iro1 and iro7 genes uncovered their essential roles in neural crest development and establishment of the isthmic organizer at the MHB. These results suggest a new role for Iro genes in establishment of an ectodermal compartment after Wnt signaling in vertebrate development. Furthermore, analysis of activator or repressor forms of iro7 suggests that iro1 and iro7 are likely to function as repressors in establishment of the isthmic organizer and neural crest, and Iro genes may have dual functions as repressors and activators in neurogenesis.  相似文献   

5.
The development of the vertebrate brain depends on the formation of local organizing centres within the neural tube that express secreted signals that refine local neural progenitor identity. The isthmic organizer (IsO) forms at the isthmic constriction and is required for the growth and ordered development of mesencephalic and metencephalic structures. The formation of the IsO, which is characterized by the generation of a complex pattern of cells at the midbrain-hindbrain boundary, has been described in detail. However, when neural plate cells are initially instructed to form the IsO, the molecular nature of the inductive signals remain poorly defined. We now provide evidence that convergent Wnt and FGF signaling at the gastrula stage are required to generate the complex polarized pattern of cells characteristic of the IsO, and that Wnt and FGF signals in combination are sufficient to reconstruct, in na?ve forebrain cells, an IsO-like structure that exhibits an organizing activity that mimics the endogenous IsO when transplanted into the diencephalon of chick embryos.  相似文献   

6.
The neuroectodermal tissue close to the midbrain-hindbrain boundary (MHB) is an important secondary organizer in the developing neural tube. This so-called isthmic organizer (IsO) secretes signaling molecules, such as fibroblast growth factors (FGFs), which regulate cellular survival, patterning and proliferation in the midbrain and rhombomere 1 (R1) of the hindbrain. We have previously shown that FGF-receptor 1 (FGFR1) is required for the normal development of this brain region in the mouse embryo. Here, we have compared the gene expression profiles of midbrain-R1 tissues from wild-type embryos and conditional Fgfr1 mutants, in which FGFR1 is inactivated in the midbrain and R1. Loss of Fgfr1 results in the downregulation of several genes expressed close to the midbrain-hindbrain boundary and in the disappearance of gene expression gradients in the midbrain and anterior hindbrain. Our screen identified several previously uncharacterized genes which may participate in the development of midbrain-R1 region. Our results also show altered neurogenesis in the midbrain and R1 of the Fgfr1 mutants. Interestingly, the neuronal progenitors in midbrain and R1 show different responses to the loss of signaling through FGFR1.  相似文献   

7.
The isthmic organizer and brain regionalization   总被引:4,自引:0,他引:4  
Distinct neural identities are acquired through progressive restriction of developmental potential under the influence of local environmental signals. Evidence for the localization of such morphogenetic signals at specific locations of the developing neural primordium has suggested the concept of "secondary organizer regions", which regulate the identity and regional polarity of neighboring neuroepithelial areas one step further. In recent years, the most studied secondary organizer has been the isthmic organizer, which is localized at the hind-midbrain transition and controls anterior hindbrain and midbrain regionalization. Otx2 and Gbx2 expression is fundamental for positioning the organizer and for the establishment of molecular interactions that induce Fgf8 expression and then, stabilize the autoregulative loop of En1, Wnt1 and Pax2 expression. Temporospatial patterns of such gene expressions are necessary for the correct development of the organizer which, by a planar mechanism of induction, controls the normal development of the rostral hindbrain from r2 to the midbrain-diencephalic boundary. Fgf8 appears as the active diffusible molecule for isthmic morphogenetic activity and has been suggested to be the morphogenetic effector in other inductive activities revealed in other neuroepithelial regions.  相似文献   

8.
Development and differentiation of the vertebrate caudal midbrain and anterior hindbrain are dependent on the isthmic organizer signals at the midbrain/hindbrain boundary (MHB). The future MHB forms at the boundary between the Otx2 and Gbx2 expression domains. Recent studies in mice and chick suggested that the apposition of Otx2- and Gbx2-expressing cells is instrumental for the positioning and early induction of the MHB genetic cascade. We show that Otx2 and Gbx2 perform different roles in this process. We find that ectopically expressed Otx2 on its own can induce a substantial part of the MHB genetic network, namely En2, Wnt1, Pax-2, Fgf8 and Gbx2, in a concentration-dependent manner. This induction does not require protein synthesis and ends during neurulation. In contrast, Gbx2 is a negative regulator of Otx2 and the MHB genes. Based on the temporal patterns of expression of the genes involved, we propose that Otx2 might be the early inducer of the isthmic organizer genetic network while Gbx2 restricts Otx2 expression along the anterior-posterior axis and establishes an Otx2 gradient.  相似文献   

9.
10.
During vertebrate development, an organizing signaling center, the isthmic organizer, forms at the boundary between the midbrain and hindbrain. This organizer locally controls growth and patterning along the anteroposterior axis of the neural tube. On the basis of transplantation and ablation experiments in avian embryos, we show here that, in the caudal midbrain, a restricted dorsal domain of the isthmic organizer, that we call the isthmic node, is both necessary and sufficient for the formation and positioning of the roof plate, a signaling structure that marks the dorsal midline of the neural tube and that is involved in its dorsoventral patterning. This is unexpected because in other regions of the neural tube, the roof plate has been shown to form at the site of neural fold fusion, which is under the influence of epidermal ectoderm derived signals. In addition, the isthmic node contributes cells to both the midbrain and hindbrain roof plates, which are separated by a boundary that limits cell movements. We also provide evidence that mid/hindbrain roof plate formation involves homeogenetic mechanisms. Our observations indicate that the isthmic organizer orchestrates patterning along the anteroposterior and the dorsoventral axis.  相似文献   

11.
In zebrafish acerebellar (ace) embryos, because of a point mutation in fgf8, the isthmic constriction containing the midbrain-hindbrain boundary (MHB) organizer fails to form. The mutants lack cerebellar development by morphological criteria, and they appear to have an enlarged tectum, showing no obvious reduction in the tissue mass at the dorsal mesencephalic/metencephalic alar plate. To reveal the molecular identity of the tissues located at equivalent rostrocaudal positions along the neuraxis as the isthmic and cerebellar primordia in wild-types, we undertook a detailed analysis of ace embryos. In ace mutants, the appearance of forebrain and midbrain specific marker genes (otx2, dmbx1, wnt4) in the caudal tectal enlargement reveals a marked rostralized gene expression profile during early somitogenesis, followed by the lack of early and late cerebellar-specific gene expression (zath1/atoh1, gap43, tag1/cntn2, neurod, zebrin II). The Locus coeruleus (LC) derived from rostral rhombomere 1 is also absent in the mutants. A new interface between otx2 and epha4a suggests that the rostralization stops at the caudal part of rhombomere 1. The mesencephalic basal plate is also affected in the mutant embryos, as indicated by the caudal expansion of the diencephalic expression domains of epha4a, zash1b/ashb, gap43 and tag1/cntn2, and by the dramatic reduction of twhh expression. No marked differences are seen in cell proliferation and apoptotic patterns around the time the rostralization of gene expression becomes evident in the mutants. Therefore, locally distinct cell proliferation and cell death is unlikely to be the cause of the fate alteration of the isthmic and cerebellar primordia in the mutants. Dil cell-lineage labeling of isthmic primordial cells reveals that cells, at the location equivalent of the wild-type MHB, give rise to caudal tectum in ace embryos. This suggests that a caudalto-rostral transformation leads to the tectal expansion in the mutants. Fgf8-coated beads are able to rescue morphological MHB formation, and elicit the normal molecular identity of the isthmic and cerebellar primordium in ace embryos. Taken together, our analysis reveals that cells of the isthmic and cerebellar primordia acquire a more rostral, tectal identity in the absence of the functional MHB organizer signal Fgf8.  相似文献   

12.
The midbrain--hindbrain boundary organizer   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
Chick/quail transplantation experiments were performed to analyse possible factors involved in the regionalisation of the midbrain-hindbrain domain. The caudal prosomeres, expressing Otx2, were transplanted at stage HH10 into rostrocaudal levels of the midbrain-hindbrain domain, either straddling the intra-metencephalic constriction (type 1 grafts), or at rostral and medial levels of pro-rhombomere A1 (type 2 and 3 grafts, respectively); thus, in all situations, one border of the graft was in contact with the host Gbx2- and Fgf8-expressing domains. The area containing the graft, recognised by QCPN immunohistochemistry, was first analysed 48 hours after transplantation for Otx2, Gbx2, En2 and Fgf8. Although in all three situations, a large part of the graft maintained Otx2 expression, another part became Otx2 negative and was induced to express Gbx2 and Fgf8. These inductive events occurred exclusively at the interface between the Otx2-positive transplanted domain and the ipsilateral host Gbx2-positive rhombomere 1, creating a new Otx2-Gbx2 boundary within the grafted territory. In type 1 and 2 grafts, the induced Fgf8 domain is in continuity with the host Fgf8 isthmic domain, whereas for type 3 grafts, these two domains are separate. High levels of En2 expression were also induced in the area expressing Gbx2 and Fgf8, and Wnt1 and Pax2 expressions, analysed in type 3 grafts, were induced at the intragraft Otx2-Gbx2 new boundary. Moreover, at later embryonic stages, the graft developed meso-isthmo-cerebellar structures. Thus, gene expressions induced in the grafted prosencephalon not only mimicked the pattern observed in the normal midbrain-hindbrain domain, but is followed by midbrain-hindbrain cytodifferentiation, indicating that not only Fgf8 but also confrontation of Otx2 and Gbx2 may play an essential role during midbrian-hindbrain regionalisation.  相似文献   

16.
Fgfr1-dependent boundary cells between developing mid- and hindbrain   总被引:5,自引:0,他引:5  
Signaling molecules regulating development of the midbrain and anterior hindbrain are expressed in distinct bands of cells around the midbrain-hindbrain boundary. Very little is known about the mechanisms responsible for the coherence of this signaling center. One of the fibroblast growth factor (FGF) receptors, Fgfr1, is required for establishment of a straight border between developing mid- and hindbrain. Here we show that the cells close to the border have unique features. Unlike the cells further away, these cells express Fgfr1 but not the other FGF receptors. The cells next to the midbrain-hindbrain boundary express distinct cell cycle regulators and proliferate less rapidly than the surrounding cells. In Fgfr1 mutants, these cells fail to form a coherent band at the boundary. The slowly proliferating boundary cells are necessary for development of the characteristic isthmic constriction. They may also contribute to compartmentalization of this brain region.  相似文献   

17.
18.
Beads containing recombinant FGF8 (FGF8-beads) were implanted in the prospective caudal diencephalon or midbrain of chick embryos at stages 9-12. This induced the neuroepithelium rostral and caudal to the FGF8-bead to form two ectopic, mirror-image midbrains. Furthermore, cells in direct contact with the bead formed an outgrowth that protruded laterally from the neural tube. Tissue within such lateral outgrowths developed proximally into isthmic nuclei and distally into a cerebellum-like structure. These morphogenetic effects were apparently due to FGF8-mediated changes in gene expression in the vicinity of the bead, including a repressive effect on Otx2 and an inductive effect on En1, Fgf8 and Wnt1 expression. The ectopic Fgf8 and Wnt1 expression domains formed nearly complete concentric rings around the FGF8-bead, with the Wnt1 ring outermost. These observations suggest that FGF8 induces the formation of a ring-like ectopic signaling center (organizer) in the lateral wall of the brain, similar to the one that normally encircles the neural tube at the isthmic constriction, which is located at the boundary between the prospective midbrain and hindbrain. This ectopic isthmic organizer apparently sends long-range patterning signals both rostrally and caudally, resulting in the development of the two ectopic midbrains. Interestingly, our data suggest that these inductive signals spread readily in a caudal direction, but are inhibited from spreading rostrally across diencephalic neuromere boundaries. These results provide insights into the mechanism by which FGF8 induces an ectopic organizer and suggest that a negative feedback loop between Fgf8 and Otx2 plays a key role in patterning the midbrain and anterior hindbrain.  相似文献   

19.
The organizer at the midbrain-hindbrain boundary (MHB) forms at the interface between Otx2 and Gbx2 expressing cell populations, but how these gene expression domains are set up and integrated with the remaining machinery controlling MHB development is unclear. Here we report the isolation, mapping, chromosomal synteny and spatiotemporal expression of gbx1 and gbx2 in zebrafish. We focus in particular on the expression of these genes during development of the midbrain-hindbrain territory. Our results suggest that these genes function in this area in a complex fashion, as evidenced by their highly dynamic expression patterns and relation to Fgf signaling. Analysis of gbx1 and gbx2 expression during formation of the MHB in mutant embryos for pax2.1, fgf8 and pou2 (noi, ace, spg), as well as Fgf-inhibition experiments, show that gbx1 acts upstream of these genes in MHB development. In contrast, gbx2 activation requires ace (fgf8) function, and in the hindbrain primordium, also spg (pou2). We propose that in zebrafish, gbx genes act repeatedly in MHB development, with gbx1 acting during the positioning period of the MHB at gastrula stages, and gbx2 functioning after initial formation of the MHB, from late gastrulation stages onwards. Transplantation studies furthermore reveal that at the gastrula stage, Fgf8 signals from the hindbrain primordium into the underlying mesendoderm. Apart from the general involvement of gbx genes in MHB development reported also in other vertebrates, these results emphasize that early MHB development can be divided into multiple steps with different genetic requirements with respect to gbx gene function and Fgf signaling. Moreover, our results provide an example for switching of a specific gene function of gbx1 versus gbx2 between orthologous genes in zebrafish and mammals.  相似文献   

20.
On the basis of developmental gene expression, the vertebrate central nervous system comprises: a forebrain plus anterior midbrain, a midbrain-hindbrain boundary region (MHB) having organizer properties, and a rhombospinal domain. The vertebrate MHB is characterized by position, by organizer properties and by being the early site of action of Wnt1 and engrailed genes, and of genes of the Pax2/5/8 subfamily. Wada and others (Wada, H., Saiga, H., Satoh, N. and Holland, P. W. H. (1998) Development 125, 1113-1122) suggested that ascidian tunicates have a vertebrate-like MHB on the basis of ascidian Pax258 expression there. In another invertebrate chordate, amphioxus, comparable gene expression evidence for a vertebrate-like MHB is lacking. We, therefore, isolated and characterized AmphiPax2/5/8, the sole member of this subfamily in amphioxus. AmphiPax2/5/8 is initially expressed well back in the rhombospinal domain and not where a MHB would be expected. In contrast, most of the other expression domains of AmphiPax2/5/8 correspond to expression domains of vertebrate Pax2, Pax5 and Pax8 in structures that are probably homologous - support cells of the eye, nephridium, thyroid-like structures and pharyngeal gill slits; although AmphiPax2/5/8 is not transcribed in any structures that could be interpreted as homologues of vertebrate otic placodes or otic vesicles. In sum, the developmental expression of AmphiPax2/5/8 indicates that the amphioxus central nervous system lacks a MHB resembling the vertebrate isthmic region. Additional gene expression data for the developing ascidian and amphioxus nervous systems would help determine whether a MHB is a basal chordate character secondarily lost in amphioxus. The alternative is that the MHB is a vertebrate innovation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号