首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Burnouf 《Biologicals》1992,20(2):91-100
Plasma-derived coagulation factor concentrates, prepared using traditional manufacturing processes, have transmitted viral diseases, especially AIDS, hepatitis B and hepatitis C to patients. To date, more extensive selection of blood donors, improved screening procedures of each plasma donation for direct and indirect viral markers, and newly developed virucidal procedures, especially pasteurization and solvent-detergent, together with extraction technologies of plasma proteins based on high-resolution chromatographic separations, have diminished considerably the risks of transmitting these pathogenic agents. To ensure safety, each production process must be carefully validated, following a rigorous scientific approach to assess its ability to inactivate or eliminate viruses. In addition, Good Manufacturing Practices must avoid any variation from these validated viral inactivation processes and must eliminate risks of potential downstream contamination of purified plasma fractions following viral inactivation or elimination steps. Other side-effects associated with conventional low-purity preparations, such as acute haemolytic anemia due to contamination by isohaemagglutinins, or immunosuppression possibly due to an overload in fibrinogen and immunoglobulins, have not been reported following infusion of highly purified coagulation factor concentrates. Present state-of-the-art virus inactivation and protein-purification technologies have significantly improved the safety of plasma coagulation factor concentrates.  相似文献   

2.
In the early 1990s, a series of outbreaks of hepatitis C (HCV) infections clustering among recipients of certain lots of plasma-derived medicinal products (PDMP) alarmed regulatory authorities, manufacturers and the public alike. Also, a few episodes of Hepatitis A (HAV) infections occurred in haemophiliacs receiving solvent-detergent-treated factor VIII concentrates. Thus, several measures were brought into effect to reestablish the safety of the incriminated products and to further increase the margin of safety of PDMP in general. Therefore, intramuscular immunoglobulins had to be free of HCV RNA as shown by nucleic acid amplification technology (NAT) in the final products. Furthermore, the manufacturing process of PDMP had to be validated for both viral inactivation and elimination. Finally, HCV-NAT was to be standardised and implemented as a validated test of plasma pool samples.In 1994, a joint meeting of EPFA, EAPPI and Regulatory Authorities was held in Brussels to outline the state of the art and to delineate the actions to be taken. Five years later, in 1999, the incidence rates of HIV, HBV and HCV in unpaid blood donors have been minimized, especially in European countries. With probabilities for window period donations as low as 0.6 in 1 million for both HIV and HCV and 2.1 in 1 million for HBV in Switzerland, labile blood products have reached extreme, but not absolute safety. The introduction of HCV-NAT roughly doubles this safety resulting in a 1 in 3 million probability of a window donation.Concomittantly, extensive viral validation studies document effective inactivation and removal of viruses in PDMP. The demonstrated margins of safety, expressed as logarithmical reduction factors (LRF), range from 4 to over 20 log(10), depending on product, virus, and inactivation procedure used. Further progress to even safer PDMP shall be acomplished by consolidating the GMP processes, abandoning of obsolete requirements and harmonising national regulations within Europe. Before introducing new measures for additional agents such as HAV or Parvovirus B 19, gains and risks and even potential new threats have to be carefully assessed. Alternative efforts for the safeguard of patients, e.g. vaccination for HAV, need to be balanced against the risks of changing established and validated manufacturing procedures of PDMP with long-lasting safety records.  相似文献   

3.
4.
Haemophilia is a bleeding disorder characterised by a deficiency in Factor IX. Replacement therapy in the form of a Factor IX concentrate is a widely accepted practice. In this paper we describe a double virus inactivated chromatographic process for producing a high purity Factor IX product, MonoFIX((R))-VF. The process involves separation of the prothrombin complex by cryoprecipitation, fraction I precipitation and DEAE-cellulose adsorption, further ion-exchange chromatography of crude Factor IX, followed by solvent/detergent treatment. Heparin affinity chromatography is then used to further purify Factor IX. Final nanofiltration is sequential through 35 nm then 15 nm membrane filters. The principal virus inactivation/removal steps are solvent/detergent treatment and nanofiltration and the partitioning of relevant and model viruses provides further reduction in virus load through the production process.Solvent/detergent treatment was shown to achieve log reduction factors of 4.5 for HIV-1, 5.1 for Sindbis virus, 6.1 for vesicular stomatitis virus (VSV), 5.1 for bovine viral diarrhoea virus (BVDV) and 5.3 for pseudorabies virus (PRV). BVDV is a model for hepatitis C virus (HCV), and pseudorabies virus (PRV), like hepatitis B virus (HBV) is an enveloped DNA virus. Using scaled down models of the production process, we have also demonstrated the neutralization/partitioning of at least 6 logs of hepatitis A virus (HAV) during cryoprecipitation, Fraction I precipitation, and the DEAE adsorption and elution step, and a further 1.6 log reduction in HAV load as a result of heparin affinity chromatography. The log reduction factors for HAV as a result of the second ion-exchange chromatography step and as a result of enhanced neutralisation associated with solvent/detergent treatment were not significant. Nanofiltration was shown to contribute a further log reduction factor of 6.7 for HAV and 5.8 for BVDV indicating that log reduction factors of this order would be obtained with other viruses of a similar or larger size, such as HIV, HBV and HCV.Overall, these studies indicate that MonoFIX-VF is a product with an extremely high level of viral safety.  相似文献   

5.
In the production of monoclonal antibodies (mAbs) intended for use in humans, it is a global regulatory requirement that the manufacturing process includes unit operations that are proven to inactivate or remove adventitious agents to ensure viral safety. Viral inactivation by low pH hold (LPH) is typically used to ensure this viral safety in the purification process of mAbs and other biotherapeutics derived from mammalian cell lines. To ascertain the effectiveness of the LPH step, viral clearance studies have evaluated LPH under worst-case conditions of pH above the manufacturing set point and hold duration at or below the manufacturing minimum. Highly acidic conditions (i.e., pH < 3.60) provide robust and effective enveloped virus inactivation but may lead to reduced product quality of the therapeutic protein. However, when viral inactivation is operated above pH 3.60 to ensure product stability, effective (>4 log10 reduction factor) viral inactivation may not be observed under these worst-case pH conditions in viral clearance studies. A multivariate design of experiments was conducted to further characterize the operating space for low pH viral inactivation of a model retrovirus, xenotropic murine leukemia virus (X-MuLV). The statistically designed experiment evaluated the effect of mAb isotype, pH, temperature, acid titrant, sodium chloride (NaCl) concentration, virus spike timing, and post-spike filtration on X-MuLV inactivation. Data from the characterization study were used to generate predictive models to identify conditions that reliably achieve effective viral inactivation at pH ≥ 3.60. Results of the study demonstrated that NaCl concentration has the greatest effect on virus inactivation in the range studied, and pH has a large effect when the load material has no additional NaCl. Overall, robust and effective inactivation of X-MuLV at pH 3.65–3.80 can be achieved by manipulating either the pH or the NaCl concentration of the load material. This study contributes to the understanding of ionic strength as an influential parameter in low pH viral inactivation studies.  相似文献   

6.
Viral safety is a prerequisite for manufacturing clinical antihemophilic factor VIII concentrates from human plasma. With particular regard to the hepatitis A virus (HAV), a terminal dry-heat treatment (100 degrees for 30 min) process, following lyophilization, was developed to improve the virus safety of a solvent/detergent-treated antihemophilic factor VIII concentrate. The loss of factor VIII activity during dry-heat treatment was of about 5%. No substantial changes were observed in the physical and biochemical characteristics of the dry-heat-treated factor VIII compared with those of the factor VIII before dry-heat treatment. The dry-heat-treated factor VIII was stable for up to 24 months at 4oC. The dry-heat treatment after lyophilization was an effective process for inactivating viruses. The HAV, murine encephalomyocarditis virus (EMCV), and human immunodeficiency virus (HIV) were completely inactivated to below detectable levels within 10 min of the dry-heat treatment. Bovine herpes virus (BHV) and bovine viral diarrhea virus (BVDV) were potentially sensitive to the treatment. However porcine parvovirus (PPV) was slightly resistant to the treatment. The log reduction factors achieved during lyophilization and dry-heat treatment were > or =5.55 for HAV, > or =5.87 for EMCV, > or =5.15 for HIV, 6.13 for BHV, 4.46 for BVDV, and 1.90 for PPV. These results indicate that dry-heat treatment improves the virus safety of factor VIII concentrates, without destroying the activity. Moreover, the treatment represents an effective measure for the inactivation of non-lipid-enveloped viruses, in particular HAV, which is resistant to solvent/detergent treatment.  相似文献   

7.
Transfusion of blood and blood products range from 2 to 8% of the cases of AIDS. The identification of HIV viral agent and the appearance of tests designed to detect antibodies associated with mechanisms of autologous transfusions and inactivation of virus of clotting factors concentrates have contributed to decrease this mean of transmission. Some aspects such as the difference of sensitivity in the tests, immunologic windows, and the appearance of new viruses such as the HIV 2 increase the complexity of the problem. Therefore, the services of hemotherapy all over the world must be aware of mechanisms of exclusion of potentially infected donors, in addition to education, and, mainly, the development of new techniques that can guarantee transfusion safety.  相似文献   

8.
9.
Procurement and processing of human plasma for fractionation of therapeutic proteins or biological medicines used in clinical practice is a multi-billion dollar international trade. Together the private sector and public sector (non-profit) provide large amounts of safe and effective therapeutic plasma proteins needed worldwide. The principal therapeutic proteins produced by the dichotomous industry include gamma globulins or immunoglobulins (including pathogen-specific hyperimmune globulins, such as hepatitis B immune globulins) albumin, factor VIII and Factor IX concentrates. Viral inactivation, principally by solvent detergent and other processes, has proven highly effective in preventing transmission of enveloped viruses, viz. HBV, HIV, and HCV.  相似文献   

10.
Advances in safety of blood transfusion in clinical practice principally relate to preventing transfusion-transmitted infections (TTI). Epidemiological studies of TTI have resulted in the development, standardization, and implementation of an expanding array of immunoassays employed worldwide in routine screening of blood donated by voluntary blood donors. Exclusion of infected blood and their donors has remarkably reduced the risk of transmitting HBV, HCV, HIV-1/2, and HTLV-I/II infections. Nucleic acid tests (NAT) using enzymatic amplification of viral gene sequences have augmented the risk reduction in “window period” infections that are undetectable by the serological tests. Improved viral safety of transfusion therapy has led us to recognize the risk of bacterial contamination, especially in platelet concentrates stored optimally at room temperature. Besides the current effort devoted to microbial risk reduction, pathogen inactivation technologies promise reduction of the residual risk of known and emerging infectious agents. The clinical effectiveness of the foregoing measures, international harmonization/standardization of practices and procedures, and continued hemovigilance portend safest possible safety in the clinical practice of blood transfusion.  相似文献   

11.
Several virus inactivation procedures like heat treatment, gamma irradiation and chemical sterilization are used to increase the safety of bone tissue transplants. In this study we present data on the virus-inactivating effect of heat disinfection on human femoral heads, using the Marburg bone bank system 'Lobator sd-2'. Three enveloped viruses (human immunodeficiency virus type 2 [HIV-2], bovine viral diarrhoea virus as a model for Hepatitis C virus [HCV], and the herpesvirus pseudorabies virus), and three non-enveloped viruses (hepatitis A virus, poliomyelitis virus, and bovine parvovirus) were investigated.In a model system the central part of human femoral heads was contaminated with the respective cell-free virus suspension, establishing a direct contact between virus and native bone tissue. The core temperature in the femoral heads during the sterilization process was determined in additional model experiments. A temperature of 82.5 degrees C, given by the manufacturer as the effective temperature for virus inactivation, was maintained for at least 15 min in decartilaged femoral heads with a diameter of < or = 56 mm. Heat treatment using the Lobator sd-2 inactivated all viruses in human femoral heads below the detection limit (at least by a factor of > or =4 log(10)).By combining a well-focussed anamnesis of the donors and serological testing for relevant infection markers (anti-HIV-1/2, HBsAg, anti-HBcore, anti-HCV, TPHA) with heat treatment of femoral heads in the Lobator sd-2 system, a high safety level is achieved. To further increase virus safety of cadaveric bone transplants, it is recommended that multi-organ donors are tested by nucleic acid testing (i.e. polymerase chain reaction) for HIV, HBV and HCV genome.  相似文献   

12.
Chinese hamster ovary cells used for pharmaceutical protein production express noninfectious retrovirus-like particles. To assure the safety of pharmaceutical proteins, validation of the ability of manufacturing processes to clear retrovirus-like particles is required for product registration. Xenotropic murine leukemia virus (X-MuLV) is often used as a model virus for clearance studies. Traditionally, cell-based infectivity assay has been the standard virus quantification method. In this article, a real time quantitative PCR (Q-PCR) method has been developed for X-MuLV detection/quantification. This method provides accurate and reproducible quantification of X-MuLV particle RNA (pRNA) over a linear dynamic range of at least 100,000-fold with a quantification limit of approximately 1.5 pRNA copies microL(-1). It is about 100-fold more sensitive than the cell-based infectivity assay. High concentrations of protein and cellular DNA present in test samples have been demonstrated to have no impact on X-MuLV quantification. The X-MuLV clearance during chromatography and filtration procedures determined by this method is highly comparable with that determined by the cell-based infectivity assay. X-MuLV clearance measured by both methods showed that anion exchange chromatography (QSFF) and DV50 viral filtration are robust retroviral removal steps. In addition, combination of the two methods was able to distinguish the viral removal from inactivation by the Protein A chromatography, and fully recognize the viral clearance capacity of this step. This new method offers significant advantages over cell-based infectivity assays. It could be used to substitute cell-based infectivity assays for process validation of viral removal procedures, but not inactivation steps. Its availability should greatly facilitate and reduce the cost of viral clearance evaluations for new biologic product development.  相似文献   

13.
Caprylic acid (octanoic acid), has been used for over 50 years as a stabilizer of human albumin during pasteurization. In addition caprylic acid is of great interest, by providing the advantage of purifying mammalian immunoglobulins and clearing viruses infectivity in a single step. Exploiting these two properties, we sequentially used the caprylic acid precipitation and the pasteurization to purify horse hyperimmune globulins used in the manufacturing of Sérocytol. To evaluate the effectiveness of the process for the removal/inactivation of viruses, spiking studies were carried out for each dedicated step. Bovine viral diarrhoea virus (BVDV), pseudorabies virus (PRV), encephalomyocarditis virus (EMCV) and minute virus of mice (MVM) were used for the virological validation. Our data show that the treatment with caprylic acid 5% (v/v) can effectively be used as well to purify or to ensure viral safety of immunoglobulins. Caprylic acid precipitation was very efficient in removing and/or inactivating enveloped viruses (PRV, BVDV) and moderately efficient against non-enveloped viruses (MVM, ECMV). However the combination with the pasteurization ensured an efficient protection against both enveloped and non-enveloped viruses. So that viruses surviving to the caprylic acid precipitation will be neutralized by pasteurization. Significant log reduction were achieved > or =9 log(10) for enveloped viruses and 4 log(10) for non-enveloped viruses, providing the evidence of a margin of viral safety achieved by our manufacturing process. Its a simple and non-expensive manufacturing process of immunoglobulins easily validated that we have adapted to a large production scale with a programmable operating system.  相似文献   

14.

Background

Mathematical models have shown to be extremely helpful in understanding the dynamics of different virus diseases, including hepatitis B. Hepatitis D virus (HDV) is a satellite virus of the hepatitis B virus (HBV). In the liver, production of new HDV virions depends on the presence of HBV. There are two ways in which HDV can occur in an individual: co-infection and super-infection. Co-infection occurs when an individual is simultaneously infected by HBV and HDV, while super-infection occurs in persons with an existing chronic HBV infection.

Methodology/Principal Findings

In this work a mathematical model based on differential equations is proposed for the viral dynamics of the hepatitis D virus (HDV) across different scenarios. This model takes into consideration the knowledge of the biology of the virus and its interaction with the host. In this work we will present the results of a simulation study where two scenarios were considered, co-infection and super-infection, together with different antiviral therapies. Although, in general the predicted course of HDV infection is similar to that observed for HBV, we observe a faster increase in the number of HBV infected cells and viral load. In most tested scenarios, the number of HDV infected cells and viral load values remain below corresponding predicted values for HBV.

Conclusions/Significance

The simulation study shows that, under the most commonly used and generally accepted therapy approaches for HDV infection, such as lamivudine (LMV) or ribavirine, peggylated alpha-interferon (IFN) or a combination of both, LMV monotherapy and combination therapy of LMV and IFN were predicted to more effectively reduce the HBV and HDV viral loads in the case of super-infection scenarios when compared with the co-infection. In contrast, IFN monotherapy was found to reduce the HDV viral load more efficiently in the case of super-infection while the effect on the HBV viral load was more pronounced during co-infection. The results suggest that there is a need for development of high efficacy therapeutic approaches towards the specific inhibition of HDV replication. These approaches may additionally be directed to the reduction of the half-life of infected cells and life-span of newly produced circulating virions.  相似文献   

15.
Model virus inactivation studies with lipid solvents were carried our in antihemophilic factor concentrates. The procoagulant activity obtained was >/=80% recovery with 20% amyl acetate-0.1% deoxycholate. A concurrent reduction of four logs of virus titer was obtained for model viruses provided the viral mass contained significant amounts (>/=20%) of lipid. From this preliminary study it appears that further investigations in animal models may be warranted to demonstrate the inactivation of hepatitis B virus, non-A-non-B virus, and AIDS virus with 20% amyl acetate-0.1% deoxycholate in antihemophilic factor concentrates.  相似文献   

16.
应用市售丙型肝炎PCR检测试剂盒,对1994 1996年用不同病毒灭活工艺生产的人凝血因子类制品、人静注丙球和人血白蛋白进行HCV RNA检测。结果表明,检测六种血液制品共21批,1批阳性,占48%。  相似文献   

17.
18.
19.
Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV), Hepatitis B virus (HBV), Human Papilloma virus (HPV), and Human T Cell Leukemia virus (HTLV). The best characterized members of this family are APOBEC3G (A3G) and APOBEC3F (A3F) and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif). Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.  相似文献   

20.
Caprylate has long been used as a stabiliser for albumin solutions, as well as a precipitation agent for immunoglobulins, ceruloplasmin and more recently in removing contaminants during albumin purification. Its virucidal properties have been explored and it has been proposed that the non-ionised form of the caprylate acid disrupts the integrity of the lipid bilayer and membrane associated proteins of enveloped viruses. The studies reported here further explore the use of this fatty acid to inactivate lipid-enveloped viruses in albumin manufactured for therapeutic use.Caprylate concentrations considered above solubility limits were adopted. Acidic pH was used to maximise the percentage of non-ionised caprylate and elevated temperatures were used to enhance inactivation rates. Parameters were manipulated to determine the relationship between pH, temperature and caprylate: protein ratio.These studies demonstrated that elevated temperature and low pH were critical in achieving significant reduction in virus infectivity and that the rate and extent of inactivation was sensitive to changes in caprylate:protein ratio and to changes in pH. Final inactivation conditions of 10% w/v protein, 16 mM caprylate, pH 4.5 and 30 degrees C were chosen to minimise protein dimerisation and to achieve greater than 4 log(10)inactivation of the most resistant virus tested, bovine viral diarrhoea virus.Validation studies using both model and relevant blood borne viruses demonstrated this to be a robust and effective viral inactivation step and is complementary to the commonly used pasteurisation viral inactivation step, thus providing an additional margin of safety to this valuable therapeutic blood product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号