首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To elucidate the regulator-versus-target relationship in the cyclin D1/cdk4/retinoblastoma protein (pRB) pathway, we examined fibroblasts from RB-1 gene-deficient and RB-1 wild-type littermate mouse embryos (ME) and in human tumor cell lines that differed in the status of the RB-1 gene. The RB+/+ and RB-/- ME fibroblasts expressed similar protein levels of D-type cyclins, cdk4, and cdk6, showed analogous spectra and abundance of cellular proteins complexed with cdk4 and/or cyclins D1 and D2, and exhibited comparable associated kinase activities. Of the two human cell lines established from the same sarcoma biopsy, the RB-positive SKUT1B cells contained cdk4 that was mainly associated with D-type cyclins, contrary to a predominant cdk4-p16INK4 complex in the RB-deficient SKUT1A cells. Antibody-mediated neutralization of cyclin D1 arrested the RB-positive ME and SKUT1B cells in G1, whereas this cyclin appeared dispensable in the RB-deficient ME and SKUT1A cells. Lack of requirement for cyclin D1 therefore correlated with absence of functional pRB, regardless of whether active cyclin D1/cdk4 holoenzyme was present in the cells under study. Consistent with a potential role of cyclin D/cdk4 in phosphorylation of pRB, monoclonal anti-cyclin D1 antibodies supporting the associated kinase activity failed to significantly affect proliferation of RB-positive cells, whereas the antibody DCS-6, unable to coprecipitate cdk4, efficiently inhibited G1 progression and prevented pRB phosphorylation in vivo. These data provide evidence for an upstream control function of cyclin D1/cdk4, and a downstream role for pRB, in the order of events regulating transition through late G1 phase of the mammalian cell division cycle.  相似文献   

3.
Different mouse muscle cell lines were found to express distinct patterns of myosin heavy chain (MHC) isoforms, MyoD1, and myogenin, but there appeared to be no correlation between the pattern of MHC expression and the patterns of MyoD1 and myogenin expression. Myogenic cell lines were generated from unconverted C3H10T1/2 cells by 5-azacytidine treatment (Aza cell lines) and by stable transfection with MyoD1 (TD cell lines) or myogenin (TG cell lines). Myogenic differentiation of the newly generated cell lines was compared to that of the C2C12 and BC3H-1 cell lines. Immunoblot analysis showed that differentiated cells of each line expressed the embryonic and slow skeletal/beta-cardiac MHC isoforms though slow MHC was expressed at a much lower, barely detectable level in BC3H-1 cells. Differentiated cells of each line except BC3H-1 also expressed an additional MHC(s) that was probably the perinatal MHC isoform. Myogenin mRNA was expressed by every cell line, and, with the exception of BC3H-1 (cf., Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Cell. 51:987-1000), MyoD1 mRNA was expressed by every cell line. To determine if MyoD1 expression would alter the differentiation of BC3H-1 cells, cell lines (termed BD) were generated by transfecting BC3H-1 cells with MyoD1 under control of the beta-actin promoter. The MyoD1 protein expressed in BD cells was correctly localized in the nucleus, and, unlike the parental BC3H-1 cell line that formed differentiated MHC-expressing cells, which were predominantly mononucleated, BD cell lines formed long, multinucleated myotubes (cf., Brennan, T. J., D. G. Edmondson, and E. N. Olson. 1990. J. Cell. Biol. 110:929-938). Despite the differences in morphology and MyoD1 expression, BD myotubes and the parent BC3H-1 cells expressed the same pattern of sarcomeric MHCs.  相似文献   

4.
Proliferating myoblasts express the muscle determination factor, MyoD, throughout the cell cycle in the absence of differentiation. Here we show that a mitogen-sensitive mechanism, involving the direct interaction between MyoD and cdk4, restricts myoblast differentiation to cells that have entered into the G0 phase of the cell cycle under mitogen withdrawal. Interaction between MyoD and cdk4 disrupts MyoD DNA-binding, muscle-specific gene activation and myogenic conversion of 10T1/2 cells independently of cyclin D1 and the CAK activation of cdk4. Forced induction of cyclin D1 in myotubes results in the cytoplasmic to nuclear translocation of cdk4. The specific MyoD-cdk4 interaction in dividing myoblasts, coupled with the cyclin D1-dependent nuclear targeting of cdk4, suggests a mitogen-sensitive mechanism whereby cyclin D1 can regulate MyoD function and the onset of myogenesis by controlling the cellular location of cdk4 rather than the phosphorylation status of MyoD.  相似文献   

5.
Regulation of MyoD function in the dividing myoblast   总被引:12,自引:0,他引:12  
Wei Q  Paterson BM 《FEBS letters》2001,490(3):171-178
Proliferating myoblasts express MyoD, yet no phenotypic markers are activated as long as mitogen levels are sufficient to keep the cells dividing. Depending upon mitogen levels, a decision is made in G1 that commits the myoblast to either continue to divide or to exit from the cell cycle and activate terminal differentiation. Ectopic expression of MyoD under the control of the RSV or CMV promoters causes 10T1/2 cells to rapidly exit the cell cycle and differentiate as single myocytes, even in growth medium, whereas expression of MyoD under the weaker SV40 promoter is compatible with proliferation. Co-expression of MyoD and cyclin D1, but not cyclins A, B, E or D3, blocks transactivation of a MyoD responsive reporter. Similarly, transfection of myoblasts with the cyclin-dependent kinase (cdk) inhibitors p16 and p21 supports some muscle-specific gene expression even in growth medium. Taken altogether, these results suggest cell cycle progression negatively regulates myocyte differentiation, possibly through a mechanism involving the D1 responsive cdks. We review evidence coupling growth status, the cell cycle and myogenesis. We describe a novel mitogen-sensitive mechanism that involves the cyclin D1-dependent direct interaction between the G1 cdks and MyoD in the dividing myoblast, which regulates MyoD function in a mitogen-sensitive manner.  相似文献   

6.
7.
8.
Transformation of myoblasts by activated ras inhibits myogenic differentiation. We demonstrate that this oncogene inhibits expression of the muscle regulatory factors MyoD1 and myogenin. Expression of retroviral-encoded MyoD1 in ras-transformed myoblasts leads to the re-expression of both terminal differentiation markers and lineage markers expressed in proliferating myoblasts (including endogenous MyoD1 and myogenin), suggesting that ras inhibits myogenic differentiation in a manner dependent on the loss of MyoD1 expression. In addition, we show that fos transformation of myoblasts inhibits muscle differentiation by a similar mechanism.  相似文献   

9.
Zhang JM  Zhao X  Wei Q  Paterson BM 《The EMBO journal》1999,18(24):6983-6993
MyoD has been proposed to facilitate terminal myoblast differentiation by binding to and inhibiting phosphorylation of the retinoblastoma protein (pRb). Here we show that MyoD can interact with cyclin-dependent kinase 4 (cdk4) through a conserved 15 amino acid (aa) domain in the C-terminus of MyoD. MyoD, its C-terminus lacking the basic helix-loop-helix (bHLH) domain, or the 15 aa cdk4-binding domain all inhibit the cdk4-dependent phosphorylation of pRb in vitro. Cellular expression of full-length MyoD or fusion proteins containing either the C-terminus or just the 15 aa cdk4-binding domain of MyoD inhibit cell growth and pRb phosphorylation in vivo. The minimal cdk4-binding domain of MyoD fused to GFP can also induce differentiation of C2C12 muscle cells in growth medium. The defective myogenic phenotype in MyoD-negative BC3H1 cells can be rescued completely only when MyoD contains the cdk4-binding domain. We propose that a regulatory checkpoint in the terminal cell cycle arrest of the myoblast during differentiation involves the modulation of the cyclin D cdk-dependent phosphorylation of pRb through the opposing effects of cyclin D1 and MyoD.  相似文献   

10.
Expression of cyclins and cdks throughout murine carcinogenesis.   总被引:6,自引:0,他引:6  
The overexpression and/or amplification of cell cycle regulating genes is an important factor in the progression of cancer. Recent attention has been focused on several cyclin and cdks genes whose expression were increased in many types of tumor. In this study, we investigated the expression kinetics of cyclins A, B, D1, E and cdks 1, 2, 4, 6 by RT-PCR coupled with densitometry and correlated to the growth fraction (percentage of S cells). This analysis was performed using an experimental murine leukemic model, generated by in vivo administration of murine clonogenic cells Wehi-3b injected into balb-c mice. Differential expression of cyclins and cdks was observed between normal and tumoral cells with different patterns of expression between G1 and G2M cyclins-cdks. G1 cyclins cdks expression was significantly increased in tumor cells when compared to normal cells. In the same manner, G2M cyclins cdks expression was only observed in tumor cells at a lower level than for G1 cyclins cdks, but not detected in normal cells. These differences correlated with the growth fraction for both the G1 cyclins cdks (r = 0.91, 0.94, 0.85, 0.90 and 0.96 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) and the G2M cyclins cdks (r = 0.96, 0.97 and 0.93 for cyclins A, B and cdkl respectively). Analysis of cyclins cdks expression kinetics during tumoral progression shows that cyclins A, B and cdkl were expressed from the 12th day on of disease, increased until the death of the animals and correlated with the growth fraction (r = 0.94, 0.95 and 0.97 for cyclins A, B and cdk1 respectively) (n = 20). Overexpression of other cyclins cdks were observed, from the 6th day on for cyclin D1, the 12th day for cdk2 and cdk4, the 15th day for cdk6 and the 20th day for cyclin E. These increases persisted during tumoral progression and correlated with the growth fraction (r = 0.85, 0.94, 0.93, 0.96, and 0.98 for cyclin D1, cyclin E, cdk2, cdk4 and cdk6, respectively) (n = 20). Our results demonstrated that G1 and G2-M cyclins cdks mRNA levels were increased at approximately the same time of maximal tumor growth. Only cyclin D1 overexpression occured at the initiation of tumoral development, and could therefore be considered as an early marker of cell proliferation.  相似文献   

11.
12.
The most well understood function of the D-type cyclins is to activate the G1kinases, cdk4 and cdk6, and target the retinoblastoma gene product (pRb) forphosphorylation and inactivation. pRb can suppress S phase entry, cause a transientG1 arrest following DNA damage, and is critical in establishing terminal cell cyclewithdrawal in cells exposed to differentiation or senescence-inducing signals. Each ofthese functions of pRb can be demonstrated in cultured cells derived from humantumors that have suffered RB1 gene inactivation. In such in vitro assays, coexpressionof D type cyclins has been shown to inhibit the function of pRb, likelyreflecting an oncogenic role of cyclin D1 in vivo. Two regions of cyclin D, the LxCxEpRb-binding motif, and the cyclin box, are thought to be critical for the proper functionof cyclin D. Here we show that the LxCxE motif is dispensable in cyclin D1 for allfunctions tested, but is required by cyclin D2. This observation suggests that there isa functional difference between cyclins D1 and D2 in pRb regulation, and arguesagainst complete functional redundancy of these D cyclins. In addition, the ability ofcyclins D1 and D2 to activate cdk partners is required for induction of pRbphosphorylation and S phase entry. However, mutant forms of cyclins D1 and D2that are incapable of activating kinase partners were still able to prevent pRb-inducedsenescence. Thus, D cyclins have both kinase-dependent and kinase-independentmechanisms of interfering with proliferation arrest and senescence.  相似文献   

13.
Cell division and differentiation are largely incompatible but the molecular links between the two processes are poorly understood. Here, we overexpress G1/S phase cyclins and cyclin-dependent kinases in Xenopus embryos to determine their effect on early development and differentiation. Overexpression of cyclin E prior to the midblastula transition (MBT), with or without cdk2, results in a loss of nuclear DNA and subsequent apoptosis at early gastrula stages. By contrast, overexpressed cyclin A2 protein does not affect early development and, when stabilised by binding to cdk2, persists to tailbud stages. Overexpression of cyclin A2/cdk2 in post-MBT embryos results in increased proliferation specifically in the epidermis with concomitant disruption of skin architecture and delay in differentiation. Moreover, ectopic cyclin A2/cdk2 also inhibits differentiation of primary neurons but does not affect muscle. Thus, overexpression of a single G1/S phase cyclin/cdk pair disrupts the balance between division and differentiation in the early vertebrate embryo in a tissue-specific manner.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Myogenin is required not for the initiation of myogenesis but instead for skeletal muscle formation through poorly understood mechanisms. We demonstrate in cultured cells and, for the first time, in embryonic tissue, that myogenic late genes that specify the skeletal muscle phenotype are bound by MyoD prior to the initiation of gene expression. At the onset of muscle specification, a transition from MyoD to myogenin occurred at late gene loci, concomitant with loss of HDAC2, the appearance of both the Mef2D regulator and the Brg1 chromatin-remodeling enzyme, and the opening of chromatin structure. We further demonstrated that ectopic expression of myogenin and Mef2D, in the absence of MyoD, was sufficient to induce muscle differentiation in a manner entirely dependent on Brg1. These results indicate that myogenin specifies the muscle phenotype by cooperating with Mef2D to recruit an ATP-dependent chromatin-remodeling enzyme that alters chromatin structure at regulatory sequences to promote terminal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号