首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Models of F-actin structure predict the importance of hydrophobic loop 262-274 at the interface of subdomains 3 and 4 to interstrand interactions in filaments. If this premise is correct, prevention of the loop conformational change--its swinging motion--should abort filament formation. To test this hypothesis, we used site-directed mutagenesis to create yeast actin triple mutant (LC)2CA (L180C/L269C/C374A). This mutation places two cysteine residues in positions potentially enabling the locking of loop 262-274 to the monomer surface via disulfide formation. Exposure of the purified mutant to oxidation catalysts resulted in an increased electrophoretic mobility of actin on SDS PAGE and a loss of two cysteines by DTNB titrations, consistent with disulfide formation. The polymerization of un-cross-linked mutant actin by MgCl2 was inhibited strongly but could be restored to wild type actin levels by phalloidin and improved greatly through copolymerization with the wild-type actin. Light scattering measurements revealed nonspecific aggregation of the cross-linked actin under the same conditions. Electron microscopy confirmed the absence of filaments and the presence of amorphous aggregates in the cross-linked actin samples. Reduction of the disulfide bond by DTT restored normal actin polymerization in the presence of MgCl2 and phalloidin. These observations provide strong experimental support for a critical role of the hydrophobic loop 262-274 in the polymerization of actin into filaments.  相似文献   

2.
It has been postulated that the hydrophobic loop of actin (residues 262-274) swings out and inserts into the opposite strand in the filament, stabilizing the filament structure. Here, we analyzed the hydrophobic loop dynamics utilizing four mutants that have cysteine residues introduced at a single location along the yeast actin loop. Lateral, copper-catalyzed disulfide cross-linking of the mutant cysteine residues to the native C374 in the neighboring strand within the filament was fastest for S265C, followed by V266C, L267C, and then L269C. Site-directed spin labeling (SDSL) studies revealed that C265 lies closest to C374 within the filament, followed by C266, C267, and then C269. These results are not predicted by the Holmes extended loop model of F-actin. Furthermore, we find that disulfide cross-linking destroys L267C and L269C filaments; only small filaments are observed via electron microscopy. Conversely, phalloidin protects the L267C and L269C filaments and inhibits their disulfide cross-linking. Combined, our data indicate that, in solution, the loop resides predominantly in a "parked" position within the filament but is able to dynamically populate other conformational states which stabilize or destabilize the filament. Such states may be exploited within a cell by filament-stabilizing and -destabilizing factors.  相似文献   

3.
The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently with the use of the yeast mutant actin L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked globular actin monomer does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin, to assist with actin nucleation, and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not individually, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin, the helical twist of filamentous actin (F-actin) changes by ∼ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin and a change of twist by ∼ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics in both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors.  相似文献   

4.
The DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274), and the C terminus region are among the structural elements of monomeric (G-) actin proposed to form the intermonomer interface in F-actin. To test the proximity and interactions of these elements and to provide constraints on models of F-actin structure, cysteine residues were introduced into yeast actin either at residue 41 or 265. These mutations allowed for specific cross-linking of F-actin between C41 and C265, C265 and C374, and C41 and C265 using dibromobimane and disulfide bond formation. The cross-linked products were visualized on SDS-PAGE and by electron microscopy. Model calculations carried out for the cross-linked F-actins revealed that considerable flexibility or displacement of actin residues is required in the disulfide cross-linked segments to fit these filaments into model F-actin structures. The calculated, cross-linked structures showed a better fit to the Holmes rather than the refined Lorenz model of F-actin. It is predicted on the basis of such calculations that image reconstruction of electron micrographs of disulfide cross-linked C41-C374 F-actin should provide a conclusive test of these two similar models of F-actin structure.  相似文献   

5.
Cofilin (ADF) affects lateral contacts in F-actin   总被引:1,自引:0,他引:1  
The effect of yeast cofilin on lateral contacts between protomers of yeast and skeletal muscle actin filaments was examined in solution. These contacts are presumably stabilized by the interactions of loop 262-274 of one protomer with two other protomers on the opposite strand in F-actin. Cofilin inhibited several-fold the rate of interstrand disulfide cross-linking between Cys265 and Cys374 in yeast S265C mutant F-actin, but enhanced excimer formation between pyrene probes attached to these cysteine residues. The possibility that these effects are due to a translocation of the C terminus of actin by cofilin was ruled out by measurements of fluorescence resonance energy transfer (FRET) from tryptophan residues and ATP to acceptor probes at Cys374. Such measurements did not reveal cofilin-induced changes in FRET efficiency, suggesting that changes in Cys265-Cys374 cross-linking and excimer formation stem from the perturbation of loop 262-274 by cofilin. Changes in lateral interactions in F-actin were indicated also by the cofilin-induced partial release of rhodamine phalloidin. Disulfide cross-linking of S265C yeast F-actin inhibited strongly and reversibly the release of rhodamine phalloidin by cofilin. Overall, this study provides solution evidence for the weakening of lateral interactions in F-actin by cofilin.  相似文献   

6.
Drebrin is a mammalian neuronal protein that binds to and organizes filamentous actin (F-actin) in dendritic spines, the receptive regions of most excitatory synapses that play a crucial role in higher brain functions. Here, the structural effects of drebrin on F-actin were examined in solution. Depolymerization and differential scanning calorimetry assays show that F-actin is stabilized by the binding of drebrin. Drebrin inhibits depolymerization mainly at the barbed end of F-actin. Full-length drebrin and its C-terminal truncated constructs were used to clarify the domain requirements for these effects. The actin binding domain of drebrin decreases the intrastrand disulfide cross-linking of Cys-41 (in the DNase I binding loop) to Cys-374 (C-terminal) but increases the interstrand disulfide cross-linking of Cys-265 (hydrophobic loop) to Cys-374 in the yeast mutants Q41C and S265C, respectively. We also demonstrate, using solution biochemistry methods and EM, the rescue of filament formation by drebrin in different cases of longitudinal interprotomer contact perturbation: the T203C/C374S yeast actin mutant and grimelysin-cleaved skeletal actin (between Gly-42 and Val-43). Additionally, we show that drebrin rescues the polymerization of V266G/L267G, a hydrophobic loop yeast actin mutant with an impaired lateral interface formation between the two filament strands. Overall, our data suggest that drebrin stabilizes actin filaments through its effect on their interstrand and intrastrand contacts.  相似文献   

7.
Structural models of F-actin suggest that three segments in actin, the DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274) and the C-terminus, contribute to the formation of an intermolecular interface between three monomers in F-actin. To test these predictions and also to assess the dynamic properties of intermolecular contacts in F-actin, Cys-374 pyrene-labeled skeletal alpha-actin and pyrene-labeled yeast actin mutants, with Gln-41 or Ser-265 replaced with cysteine, were used in fluorescence experiments. Large differences in Cys-374 pyrene fluorescence among copolymers of subtilisin-cleaved (between Met-47 and Gly-48) and uncleaved alpha-actin showed both intra- and intermolecular interactions between the C-terminus and loop 38-52 in F-actin. Excimer band formation due to intermolecular stacking of pyrene probes attached to Cys-41 and Cys-265, and Cys-41 and Cys-374, in mutant yeast F-actin confirmed the proximity of these residues on the paired sites (to within 18 A) in accordance with the models of F-actin structure. The dynamic properties of the intermolecular interface in F-actin formed by loop 38-52, plug 262-274 and the C-terminus may account for the observed cross-linking of these sites with reagents < 18 A. The functional importance of actin filament dynamics was demonstrated by the inhibition of the in vitro motility in the Gln-41-Cys-374 cross-linked actin filaments.  相似文献   

8.
The Holmes F-actin model predicts a polymerization-dependent conformation change of a subdomain 3/4 loop with a hydrophobic tip (residues 266-269), allowing interaction with a hydrophobic surface on the opposing strand of the filament producing filament stabilization. We introduced cysteines in place of Val(266), Leu(267), and Leu(269) in yeast actin to allow attachment of pyrene maleimide. Pyrene at each of these positions produced differing fluorescence spectra in G-actin. Polymerization decreased the fluorescence for the 266 and 267 probes and increased that for the 269 probe. The direction of the fluorescence change was mirrored with a smaller and less hydrophobic probe, acrylodan, when attached to 266 or 269. Following polymerization, increased acrylamide quenching was observed for pyrene at 266 or 267 but not 269. The 267 probe was the least accessible of the three in G- and F-actin. F-actin quenching was biphasic for the 265, 266, and 269 but not 267 probes, suggesting that in F-actin, the pyrene samples multiple environments. Finally, in F-actin the probe at 266 interacts with one at Cys(374) on a monomer in the opposing strand, producing a pyrene excimer band. These results indicate a polymerization-dependent movement of the subdomain 3/4 loop partially consistent with Holmes' model.  相似文献   

9.
The conformational dynamics of filamentous actin (F-actin) is essential for the regulation and functions of cellular actin networks. The main contribution to F-actin dynamics and its multiple conformational states arises from the mobility and flexibility of the DNase I binding loop (D-loop; residues 40-50) on subdomain 2. Therefore, we explored the structural constraints on D-loop plasticity at the F-actin interprotomer space by probing its dynamic interactions with the hydrophobic loop (H-loop), the C-terminus, and the W-loop via mutational disulfide cross-linking. To this end, residues of the D-loop were mutated to cysteines on yeast actin with a C374A background. These mutants showed no major changes in their polymerization and nucleotide exchange properties compared to wild-type actin. Copper-catalyzed disulfide cross-linking was investigated in equimolar copolymers of cysteine mutants from the D-loop with either wild-type (C374) actin or mutant S265C/C374A (on the H-loop) or mutant F169C/C374A (on the W-loop). Remarkably, all tested residues of the D-loop could be cross-linked to residues 374, 265, and 169 by disulfide bonds, demonstrating the plasticity of the interprotomer region. However, each cross-link resulted in different effects on the filament structure, as detected by electron microscopy and light-scattering measurements. Disulfide cross-linking in the longitudinal orientation produced mostly no visible changes in filament morphology, whereas the cross-linking of D-loop residues > 45 to the H-loop, in the lateral direction, resulted in filament disruption and the presence of amorphous aggregates on electron microscopy images. A similar aggregation was also observed upon cross-linking the residues of the D-loop (> 41) to residue 169. The effects of disulfide cross-links on F-actin stability were only partially accounted for by the simulations of current F-actin models. Thus, our results present evidence for the high level of conformational plasticity in the interprotomer space and document the link between D-loop interactions and F-actin stability.  相似文献   

10.
Cofilin, a key regulator of actin filament dynamics, binds to G- and F-actin and promotes actin filament turnover by stimulating depolymerization and severance of actin filaments. In this study, cytochalasin D (CytoD), a widely used inhibitor of actin dynamics, was found to act as an inhibitor of the G-actin-cofilin interaction by binding to G-actin. CytoD also inhibited the binding of cofilin to F-actin and decreased the rate of both actin polymerization and depolymerization in living cells. CytoD altered cellular F-actin organization but did not induce net actin polymerization or depolymerization. These results suggest that CytoD inhibits actin filament dynamics in cells via multiple mechanisms, including the well-known barbed-end capping mechanism and as shown in this study, the inhibition of G- and F-actin binding to cofilin.  相似文献   

11.
Assembled actin filaments support cellular signaling, intracellular trafficking, and cytokinesis. ATP hydrolysis triggered by actin assembly provides the structural cues for filament turnover in vivo. Here, we present the cryo-electron microscopic (cryo-EM) structure of filamentous actin (F-actin) in the presence of phosphate, with the visualization of some α-helical backbones and large side chains. A complete atomic model based on the EM map identified intermolecular interactions mediated by bound magnesium and phosphate ions. Comparison of the F-actin model with G-actin monomer crystal structures reveals a critical role for bending of the conserved proline-rich loop in triggering phosphate release following ATP hydrolysis. Crystal structures of G-actin show that mutations in this loop trap the catalytic site in two intermediate states of the ATPase cycle. The combined structural information allows us to propose a detailed molecular mechanism for the biochemical events, including actin polymerization and ATPase activation, critical for actin filament dynamics.  相似文献   

12.
Cofilin, a member of the actin-depolymerizing factor (ADF)/cofilin family of proteins, is a key regulator of actin dynamics. Cofilin binds to monomer (G-) and filamentous (F-) actin, severs the filaments, and increases their turnover rate. Electron microscopy studies suggested cofilin interactions with subdomains 2 and 1/3 on adjacent actin protomers in F-actin. To probe for the presence of a cryptic cofilin binding site in subdomain 2 in G-actin, we used transglutaminase-mediated cross-linking, which targets Gln41 in subdomain 2. The cross-linking proceeded with up to 85% efficiency with skeletal alpha-actin and WT yeast actin, yielding a single product corresponding to a 1:1 actin-cofilin complex but was strongly inhibited in Q41C yeast actin (in which Q41 was substituted with cysteine). LC-MS/MS analysis of the proteolytic fragments of this complex mapped the cross-linking to Gln41 on actin and Gly1 on recombinant yeast cofilin. The actin-cofilin (AC) heterodimer was purified on FPLC for analytical ultracentrifugation and electron microscopy analysis. Sedimentation equilibrium and velocity runs revealed oligomers of AC in G-actin buffer. In the presence of excess cofilin, the covalent AC heterodimer bound a second cofilin, forming a 2:1 cofilin/actin complex, as revealed by sedimentation results. Under polymerizing conditions the cross-linked AC formed mostly short filaments, which according to image reconstruction were similar to uncross-linked actin-cofilin filaments. Although a majority of the cross-linking occurs at Gln41, a small fraction of the AC cross-linked complex forms in the Q41C yeast actin mutant. This secondary cross-linking site was sequenced by MALDI-MS/MS as linking Gln360 in actin to Lys98 on cofilin. Overall, these results demonstrate that the region around Gln41 (subdomain 2) is involved in a weak binding of cofilin to G-actin.  相似文献   

13.
Structural effects of yeast cofilin on skeletal muscle and yeast actin were examined in solution. Cofilin binding to native actin was non-cooperative and saturated at a 1:1 molar ratio, with K(d)相似文献   

14.
Cross-links between protomers in F-actin can be used as a very sensitive probe of both the dynamics and structure of F-actin. We have characterized filaments formed from a previously described yeast actin Q41C mutant, where disulfide bonds can be formed between the Cys41 that is introduced into subdomain-2 and Cys374 on an adjacent protomer. We find that the distribution of cross-linked n-mers shows no cooperativity and corresponds to a random probability cross-linking reaction. The random distribution suggests that disulfide formation does not cause a significant perturbation of the F-actin structure. Consistent with this lack of perturbation, three-dimensional reconstructions of extensively cross-linked filaments, using a new approach to helical image analysis, show very small structural changes with respect to uncross-linked filaments. This finding is in conflict with refined models but in agreement with the original Holmes et al. model for F-actin. Under conditions where 94 % of the protomers are linked by disulfide bonds, the distribution of filament twist becomes more heterogeneous with respect to control filaments. A molecular model suggests that strain, introduced by the disulfide, is relieved by increasing the twist of the long-pitch actin helices. Disulfide formation makes yeast actin filaments approximately three times less flexible in terms of bending and similar, in this respect, to vertebrate skeletal muscle F-actin. These observations support previous reports that the rigidity of F-actin can be controlled by the position of subdomain-2, and that this region is more flexible in yeast F-actin than in skeletal muscle F-actin.  相似文献   

15.
Cofilin is a major cytoskeletal protein that binds to both monomeric actin (G-actin) and polymeric actin (F-actin) and is involved in microfilament dynamics. Although an atomic structure of the G-actin-cofilin complex does not exist, models of the complex have been built using molecular dynamics simulations, structural homology considerations, and synchrotron radiolytic footprinting data. The hydrophobic cleft between actin subdomains 1 and 3 and, alternatively, the cleft between actin subdomains 1 and 2 have been proposed as possible high-affinity cofilin binding sites. In this study, the proposed binding of cofilin to the subdomain 1/subdomain 3 region on G-actin has been probed using site-directed mutagenesis, fluorescence labeling, and chemical cross-linking, with yeast actin mutants containing single reactive cysteines in the actin hydrophobic cleft and with cofilin mutants carrying reactive cysteines in the regions predicted to bind to G-actin. Mass spectrometry analysis of the cross-linked complex revealed that cysteine 345 in subdomain 1 of mutant G-actin was cross-linked to native cysteine 62 on cofilin. A cofilin mutant that carried a cysteine substitution in the α3-helix (residue 95) formed a cross-link with residue 144 in actin subdomain 3. Distance constraints imposed by these cross-links provide experimental evidence for cofilin binding between actin subdomains 1 and 3 and fit a corresponding docking-based structure of the complex. The cross-linking of the N-terminal region of recombinant yeast cofilin to actin residues 346 and 374 with dithio-bis-maleimidoethane (12.4 Å) and via disulfide bond formation was also documented. This set of cross-linking data confirms the important role of the N-terminal segment of cofilin in interactions with G-actin.  相似文献   

16.
Previously, we have shown that the V-ATPase holoenzyme as well as the V1 complex isolated from the midgut of the tobacco hornworm (Manduca sexta) exhibits the ability of binding to actin filaments via the V1 subunits B and C (Vitavska, O., Wieczorek, H., and Merzendorfer,H. (2003) J. Biol. Chem. 278, 18499-18505). Since the recombinant subunit C not only enhances actin binding of the V1 complex but also can bind separately to F-actin, we analyzed the interaction of recombinant subunit C with actin. We demonstrate that it binds not only to F-actin but also to monomeric G-actin. With dissociation constants of approximately 50 nm, the interaction exhibits a high affinity, and no difference could be observed between binding to ATP-G-actin or ADP-G-actin, respectively. Unlike other proteins such as members of the ADF/cofilin family, which also bind to G- as well as to F-actin, subunit C does not destabilize actin filaments. On the contrary, under conditions where the disassembly of F-actin into G-actin usually occurred, subunit C stabilized F-actin. In addition, it increased the initial rate of actin polymerization in a concentration-dependent manner and was shown to cross-link actin filaments to bundles of varying thickness. Apparently bundling is enabled by the existence of at least two actin-binding sites present in the N- and in the C-terminal halves of subunits C, respectively. Since subunit C has the possibility to dimerize or even to oligomerize, spacing between actin filaments could be variable in size.  相似文献   

17.
F-actin at steady state in the presence of ATP partially depolymerized to a new steady state upon mechanical fragmentation. The increase in critical concentration with the number concentration of filaments has been quantitatively studied. The data can be explained by a model in which the preferred pathway for actin association-dissociation reactions at steady state in the presence of ATP involves binding of G-actin . ATP to filaments, ATP hydrolysis, and dissociation of G-actin . ADP which is then slowly converted to G-actin . ATP. As a consequence of the slow exchange of nucleotide on G-actin, the respective amounts of G-actin . ATP and G-actin . ADP coexisting with F-actin at steady state depend on the filament number concentration. G-actin coexisting with F-actin at zero number concentration of filaments would then consist of G-actin . ATP only, while the critical concentration obtained at infinite number of filaments would be that for G-actin . ADP. Values of 0.35 and 8 microM, respectively, were found for these two extreme critical concentrations for skeletal muscle actin at 20 degrees C, pH 7.8, 0.1 mM CaCl2, 1 mM MgCl2, and 0.2 mM ATP. The same value of 8 microM was directly measured for the critical concentration of G-actin . ADP polymerized in the presence of ADP and absence of ATP, and it was unaffected by fragmentation. These results have important implications for experiments in which critical concentrations are compared under conditions that change the filament number concentrations.  相似文献   

18.
F-Actin-depolymerizing activity of human serum.   总被引:13,自引:0,他引:13  
Non-heated human and animal sera contain a factor which exhibited an inhibiting activity on the staining of actin-containing structures by anti-actin antibodies in indirect immunofluorescence experiments. The presence of this factor lowered the viscosity of F-actin preparations and caused, as studied by electron-microscopy, a depolymerization of F-actin filaments as well as inhibition of filament formation of G-actin. The factor was, after its reaction with F-actin, liberated seemingly unaffected, indicating an enzymatic activity. The factor tentatively termed 'F-actin depolymerizing factor' was heat-sensitive and trypsin sensitive but resisted reduction. It was Ca2+ dependent and the staining inhibiting reaction was faster at 30 degrees C and 37 degrees C than at lower temperatures. Gel filtration experiments on Sephadex G-200 suggested a molecular size of the actin depolymerizing factor slightly higher than that of albumin. The electrophoretic mobility was that of gamma 2 globulin. The physiological role of the factor might be to prevent the presence of F-actin filaments within the circulation.  相似文献   

19.
Mechanism of K+-induced actin assembly   总被引:14,自引:6,他引:8       下载免费PDF全文
The assembly of highly purified actin from Dictyostelium discoideum amoebae and rabbit skeletal muscle by physiological concentrations of KCI proceeds through successive stages of (a) rapid formation of a distinct monomeric species referred to as KCI-monomer, (b) incorporation of KCI-monomers into an ATP-containing filament, and (c) ATP hydrolysis that occurs significantly after the incorporation event. KCI-monomer has a conformation which is distinct from that of either conventional G- or F-actin, as judged by UV spectroscopy at 210-220 nm and by changes in ATP affinity. ATP is not hydrolyzed during conversion of G-actin to KCI-monomer. KCI-monomer formation precedes filament formation and may be necessary for the assembly event. Although incorporation of KCI-monomers into filaments demonstrates lagphase kinetics by viscometry, both continuous absorbance monitoring at 232 nm and rapid sedimentation of filaments demonstrate hyperbolic assembly curves. ATP hydrolysis significantly lags the formation of actin filaments. When half of the actin has assembled, only 0.1 to 0.2 mole of ATP are hydrolyzed per mole of actin present as filaments.  相似文献   

20.
J C Pinder  W B Gratzer 《Biochemistry》1982,21(20):4886-4890
The interaction of deoxyribonuclease I with muscle actin was studied with the aid of a pyrenyl derivative of the actin [Kouyama, T., & Mihashi, K. (1981) Eur. J. Biochem. 114, 33-38] that increases its quantum yield by an order of magnitude on polymerization. It is shown that this derivative copolymerizes with unlabeled G-actin in a random manner and will also bind to deoxyribonuclease with inhibition of enzymic activity. The derivative affords a highly sensitive means of following nucleated polymerization. Preincubation of F-actin with deoxyribonuclease at a concentration of 5% or less of that of total subunits causes inhibition of polymerization of additional G-actin onto the filaments. In red cell membranes that contain stabilized short filaments of actin such that the concentration of filament ends is large relative to monomers, complete inhibition of nucleated polymerization of G-actin is achieved by preincubation with deoxyribonuclease. The results indicate that binding of DNase occurs at the "plus" ends of the actin filaments. Competition with cytochalasin E, which is known to have a high affinity for the plus or preferentially growing ends of F-actin, can be observed. Whereas the activity of deoxyribonuclease in the 1:1 complex with G-actin is inhibited, the enzyme attached to the ends of filaments appears to be fully active. This causes a reduction in the inhibition of enzymic activity with increasing F-actin concentration, presumably by reason of a change in the partition of the enzyme between monomers and filament ends. The degree of inhibition increases with time, however, as the actin depolymerizes. Implications for measurements of actin monomer concentrations by the deoxyribonuclease assay procedure are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号