首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biological Control》2006,38(3):247-255
Entomopathogenic nematodes within the families Steinernematidae and Heterorhabditidae (Order: Rhabditida) are potential biological control agents for many soil-dwelling vegetable pests. However, their low persistence and efficacy after field releases have resulted in limited use in pest management programs. Understanding the factors regulating natural populations of entomopathogenic nematodes may provide insight into practices to conserve populations within production systems. A series of investigations were conducted within a vegetable production area in Willard, Ohio during 2000–2003 to gain insight into the population ecology of endemic populations of entomopathogenic nematodes. A total of 440 sites across four habitats associated with the production landscape were sampled to ascertain the natural occurrence of these beneficial nematodes. Habitats included cultivated areas, grassy banks adjacent to cultivated areas, undisturbed shrub lands and forests. Twelve sites along grassy banks were monitored over a growing season to estimate associations between abiotic and biotic factors and endemic populations. Entomopathogenic nematodes were only detected along grassy banks adjacent to the cultivated areas; nematodes were recovered from 15 to 30% of sites sampled in 2001 and 2002, respectively. Two species of nematodes were isolated, Heterorhabditis bacteriophora Poinar and Steinernema feltiae Filipjev. H. bacteriophora was the most prevalent nematode species and was recovered from 60% of positive samples. Nematode populations varied temporally and spatially along grassy banks; mean population density over the growing period was 1313 infective juveniles/m2. Neither macro- nor microarthropod communities nor soil temperature differed between sites at which nematodes were detected and those at which nematodes were not detected. Soil moisture, however, was associated with the occurrence and persistence of nematodes along grassy banks; mean soil moisture at sites at which nematodes were detected and those sites at which nematodes were not detected was 37.3 and 26.8%, respectively. Water management is an important component of vegetable production and our results suggest that soil moisture manipulation would be important in the establishment and sustained presence of entomopathogenic nematode populations within cultivated areas over the growing season.  相似文献   

2.
Population dynamics of Aphelenchoides fragariae were assessed over three growing seasons and during overwintering for naturally-infected, container-grown lantana (Latana camara) plants in a North Carolina nursery. During the growing season, the foliar nematode population in symptomatic leaves peaked in July each year then remained above 100 nematodes/g fresh weight into late summer. Foliar nematodes were also detected in asymptomatic and abscised leaves. Results suggest that leaves infected with foliar nematodes first develop symptoms at populations of about 10 nematodes/g. Foliar nematodes were detected in symptomatic and asymptomatic plant leaves and in abscised leaves during overwintering in a polyhouse, but the number of infected plants was low. A steep disease gradient was found for infection of lantana plants by A. fragariae on a nursery pad with sprinkler irrigation. When the canopies of initially healthy plants were touching the canopies of an infected plants, 100% of the plants became infected within 11 wk, but only 5 to 10% became infected at a canopy distance of 30 cm. Overwintering of A. fragariae in infected plants and a steep disease gradient during the growing season suggests strict sanitation and an increase in plant spacing are needed to mitigate losses from this nematode pest.  相似文献   

3.
The abundance of Pratylenchus scribneri in soil and root habitats was compared in potato and corn plots during 1986-88. Nematodes were extracted from 100-cm³ soil samples and the roots contained within the samples. The percentage of the population recovered from soil, similar among years and crops, averaged ca. 50% at the beginning and end of the growing season and ca. 20% from early to late season. Proportionately more adults and fourth-stage juveniles than younger stages were located outside roots until harvest. In a related study, nematodes were isolated from the roots, root surfaces, and soil associated with roots of whole corn and potato plants sampled from the field. Nematode population estimates calculated from the whole plant samples were generally lower than those based on soil cores, but showed similar patterns of population growth. Nematode density per gram dry weight was highest in roots, intermediate on root surfaces, and lowest in soil. Estimates of the absolute abundance of nematodes in each of the three habitats were highest in roots or soil, depending on the sampling date, and lowest on root surfaces. This study demonstrates that P. scribneri inhabits soil environments even when host roots are present and illustrates the importance of considering all possible habitats when estimating the size of Pratylenchus spp. populations.  相似文献   

4.
The bacterial diversity associated with soil nematodes and its relationship with their feeding habits are as yet poorly understood. In the present study the diversity and abundance of bacteria from nematodes and their surrounding soil were analysed and compared. The nematodes were collected from a grassland soil and sorted into bacterial, fungal, plant, predatory and omnivore feeding groups and assigned to taxonomic groups. Total DNA was extracted from the nematodes and partial bacterial 16S rRNA genes were PCR amplified, cloned and sequenced. The abundance and composition of bacterial taxa differed between and within feeding groups. The lowest bacterial diversity was found in the predatory nematodes Prionchulus sp., whereas the highest bacterial diversity was associated with the bacterial-feeding nematode Acrobeles sp. The soil had a more diverse bacterial community than the communities found in the nematode groups. The 16S rRNA gene sequences of bacteria associated with nematodes did not overlap with those detected in soil as determined using the cloning screening approach. However, bacterial sequences identified from nematodes could be detected in the soil with targeted PCR. Our data suggest that the nematodes do not feed on the most abundant bacteria present in soil. Furthermore, several nematodes contained suspected bacterial symbionts and parasites.  相似文献   

5.
Cut flower producers currently have limited options for nematode control. Four field trials were conducted in 2006 and 2007 to evaluate Midas® (iodomethane:chloropicrin 50:50) for control of root-knot nematodes (Meloidogyne arenaria) on Celosia argentea var. cristata in a commercial floriculture production field in southeastern Florida. Midas (224 kg/ha) was compared to methyl bromide:chloropicrin (98:2, 224 kg/ha), and an untreated control. Treatments were evaluated for effects on Meloidogyne arenaria J2 and free-living nematodes in soil through each season, and roots at the end of each season. Plant growth and root disease were also assessed. Population levels of nematodes isolated from soil were highly variable in all trials early in the season, and generally rebounded by harvest, sometimes to higher levels in fumigant treatments than in the untreated control. Although population levels of nematodes in soil were not significantly reduced during the growing season, nematodes in roots and galling at the end of the season were consistently reduced with both methyl bromide and Midas compared to the untreated control. Symptoms of phytotoxicity were observed in Midas treatments during the first year and were attributed to Fe toxicity. Fertilization was adjusted during the second year to investigate potential fumigant/fertilizer interactions. Interactions occurred at the end of the fourth trial between methyl bromide and fertilizers with respect to root-knot nematode J2 isolated from roots and galling. Fewer J2 were isolated from roots treated with a higher level of Fe (3.05%) in the form of Fe sucrate, and galling was reduced in methyl bromide treated plots treated with this fertilizer compared to Fe EDTA. Reduced galling was also seen with Midas in Fe sucrate fertilized plots compared to Fe EDTA. This research demonstrates the difficulty of reducing high root-knot nematode population levels in soil in subtropical conditions in production fields that have been repeatedly fumigated. Although soil population density may remain stable, root population density and disease can be reduced.  相似文献   

6.
Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes ( Heterodera spp.) are dominant in the soil nematode community and greenhouse studies pointed at bottom-up control by their host plant. Here we examine the population dynamics of H. arenaria in the field in relation to resource quantity in the root zone of Ammophila arenaria (marram grass).
Ammophila arenaria is a pioneer grass in mobile coastal foredunes of northwestern and Mediterranean Europe. Every year, the plant expands clonally into freshly deposited layers of wind-blown sand, followed by dispersal and build-up of the nematode population into the new root zone. In a newly developing root zone the first H. arenaria cysts were observed one month after the first new roots were detected, indicating that nematode dispersal is not limiting the initial establishment of new populations. Throughout the growth season, the numbers of cysts, as well as the numbers of eggs and juveniles within cysts, were related to the quantity of roots. However, cyst density varied between years. Therefore, we conclude that in new root layers of A. arenaria cyst nematodes are bottom-up controlled by resource quantity, but that other factors, for example resource quality, influence the relation between nematode abundance and resource quantity.
In deeper root zones the nematode abundance declines over time. Here, numbers of cysts were not related to root biomass, while numbers of eggs and juveniles inside the cysts were weakly related. This points at other factors than resource quantity, for example the quality of the roots or unsuitable abiotic environmental conditions that have a stronger influence on cyst numbers than resource quantity. We discuss how bottom-up control of cyst nematodes may indirectly protect the plant against harmful root knot nematodes.  相似文献   

7.
DNA polymorphism in the Ditylenchus dipsaci complex was investigated using amplified fragment length polymorphism (AFLP) to determine the relationships among populations growing mainly on Vicia faba and to develop diagnostic markers. Twenty-two populations of D. dipsaci originating from different geographical areas and one population of Ditylenchus myceliophagus were used. AFLP proved to be a powerful method to reveal intraspecific polymorphism even within the giant type. The analysis showed a clear distinction between the giant and normal populations, with genetic distances similar to those observed between normal populations and D. myceliophagus or giant populations and D. myceliophagus, strengthening the hypothesis that these two nematode types could be considered distinct species. Two specific AFLP markers differentiating the two types were converted into sequenced characterized amplified region (SCAR) markers. Used in a multiplex PCR, the SCAR primers proved to be a rapid and efficient tool to identify the giant and the normal types of D. dipsaci.  相似文献   

8.
盆栽条件下研究了施用杀线剂(克线磷,67mg·kg-1干土)和干热(105℃,2h)两种杀线措施对小麦生长和N、P养分吸收的影响。杀线剂对土壤中线虫的平均杀灭率约为80%, 干热处理的杀灭率为100%. 在杀线剂处理中,苗期至抽穗期小麦生物量、拔节期至成熟期植株含N量、全生育期植株吸N量以及抽穗和成熟期吸P量均显着低于对照。土壤干热处理后抽穗和成熟期小麦的生物量、含N量及N、P吸收量也比对照显着降低。两种杀线处理植株地上部生物量和N、P吸收量与相应处理全株变化趋势基本一致。但杀灭线虫对植株含P量影响较小。分析杀线虫后小麦生长和养分吸收受抑主要与土壤有机氮的矿化作用减弱、微生物活动产生的植物生长促进物质降低有关  相似文献   

9.
Field population densities of Ditylenchus dipsaci associated with shoot tissue of Phlox subulata were monitored during two consecutive growing seasons and intervening periods of overwintering and plant storage. The population density increased significantly through four peaks during the first growing season, and decreased significantly during storage at 5-7 C or overwintering in the field. During the second growing season, there was only a single increase to a moderate population density, followed by a severe population decline associated with the poor physiological condition of the host. A simple model is proposed to explain the population dynamics of D. dipsaci during the first growing season.  相似文献   

10.
Flue-cured tobacco was grown in microplots consisting of concrete drainage tries, 40-cm (i.d.), infested with 0; 666 ; 2000; 6000 or 18,000 root-lesion nematodes, Pratylenchus penetrans/kg of soil. Yield and grade index decreased with preplant soil population densities in excess of 2000/kg of soil. At initial densities of 6000 and 18,000/kg of soil losses in crop returns were 11.0% and 27.5%, respectively. Decreases in the maturity index and in percentage dry stalk weight with increasing densities showed that the nematode delayed maturity. Increases in population densities of nematodes were correlated with decreases in weights of tops and roots and in plant height. All final population densities in soil were lower than the initial densities except at the lowest pre-plant density. All soil populations at midseason were lower than those at the beginning and end of the growing season. Populations of P. penetrans at harvest were in excess of half a million per root system with the 18,000/kg initial soil population density. The results suggest that fumigation, which costs $75/ha, or approximately 2% of the crop value, is economically warranted at preplant densities in excess of 2000/kg of soft.  相似文献   

11.
The oil‐seed cakes of neem (Azadirachta indica), castor (Ricinus communis), linseed (Linum usitatissimum), groundnut (Arachis hypogaea), mustard (Brassica campestris) and duan (Eruca sativa) were tested for their efficacious nature against plant‐parasitic nematodes and soil‐inhabiting fungi infesting lentil and also on the subsequent crop, mungbean in field trials. The population of plant‐parasitic nematodes such as Meloidogyne incognita, Rotylenchulus reniformis, Tylenchorhynchus brassicae, Helicoty‐lenchus indicus etc., and the frequency of pathogenic fungi Macrophomina phaseolina, Fusarium oxysporum f. lentis, Rhizoctonia solarii, Septoria leguminum, Sclerotium rolfsii, etc., were significantly reduced by the incorporation of oil‐seed cakes, however, the frequency of saprophytic fungi Aspergillus niger, Trichoderma viridae, Penicillium degetatum, etc., was increased. A several‐fold improvement was observed in plant‐growth parameters such as plant weight, percent pollen fertility, pod numbers, chlorophyll content, nitrate reducíase activity in leaves and root‐nodulation. The residual effects of different oil‐seed cakes were also noted in the subsequent crop, mungbean, in the next growing season. The population of plant‐parasitic nematodes and frequency of soil‐inhabiting fungi also influenced by the depth of ploughing.  相似文献   

12.
The introduction of transgenic plants into agricultural ecosystems has raised the question of the ecological impact of these plants on nontarget organisms, such as soil bacteria. Although differences in both the genetic structure and the metabolic function of the microbial communities associated with some transgenic plant lines have been established, it remains to be seen whether these differences have an ecological impact on the soil microbial communities. We conducted a 2-year, multiple-site field study in which rhizosphere samples associated with a transgenic canola variety and a conventional canola variety were sampled at six times throughout the growing season. The objectives of this study were to identify differences between the rhizosphere microbial community associated with the transgenic plants and the rhizosphere microbial community associated with the conventional canola plants and to determine whether the differences were permanent or depended on the presence of the plant. Community-level physiological profiles, fatty acid methyl ester profiles, and terminal amplified ribosomal DNA restriction analysis profiles of rhizosphere microbial communities were compared to the profiles of the microbial community associated with an unplanted, fallow field plot. Principal-component analysis showed that there was variation in the microbial community associated with both canola variety and growth season. Importantly, while differences between the microbial communities associated with the transgenic plant variety were observed at several times throughout the growing season, all analyses indicated that when the microbial communities were assessed after winter, there were no differences between microbial communities from field plots that contained harvested transgenic canola plants and microbial communities from field plots that did not contain plants during the field season. Hence, the changes in the microbial community structure associated with genetically modified plants were temporary and did not persist into the next field season.  相似文献   

13.
The introduction of transgenic plants into agricultural ecosystems has raised the question of the ecological impact of these plants on nontarget organisms, such as soil bacteria. Although differences in both the genetic structure and the metabolic function of the microbial communities associated with some transgenic plant lines have been established, it remains to be seen whether these differences have an ecological impact on the soil microbial communities. We conducted a 2-year, multiple-site field study in which rhizosphere samples associated with a transgenic canola variety and a conventional canola variety were sampled at six times throughout the growing season. The objectives of this study were to identify differences between the rhizosphere microbial community associated with the transgenic plants and the rhizosphere microbial community associated with the conventional canola plants and to determine whether the differences were permanent or depended on the presence of the plant. Community-level physiological profiles, fatty acid methyl ester profiles, and terminal amplified ribosomal DNA restriction analysis profiles of rhizosphere microbial communities were compared to the profiles of the microbial community associated with an unplanted, fallow field plot. Principal-component analysis showed that there was variation in the microbial community associated with both canola variety and growth season. Importantly, while differences between the microbial communities associated with the transgenic plant variety were observed at several times throughout the growing season, all analyses indicated that when the microbial communities were assessed after winter, there were no differences between microbial communities from field plots that contained harvested transgenic canola plants and microbial communities from field plots that did not contain plants during the field season. Hence, the changes in the microbial community structure associated with genetically modified plants were temporary and did not persist into the next field season.  相似文献   

14.
Summary During the 1957 growing season an experiment was carried out to see if the Californian method of tissue testing during the growing season to assess the adequacy of the nitrogen supply for optimum growth was practicable in Great Britain. The experiment was laid out in the form of a latin square with the rates of nitrogen application ranging from 0 to 140 pounds per acre in increments of 35 pounds. Petiole samples were collected and analysed at fortnightly intervals from July 29th to September 23rd. The nitrate-nitrogen content of the petioles was found to increase with increasing rates of nitrogen at any one sample date and to decrease during the growing season. On harvesting in November the response in terms of root yield, whether estimated from the actual plot yields, or the root mean weight with a constant plant population, was only just significant. Greater yield responses from the application of nitrogen would probably have been obtained on a less productive soil, for a yield of 15.5 tons of roots per acre was obtained without the use of any nitrogen.  相似文献   

15.
An experiment was conducted to determine if spatial nutrient heterogeneity affects mean plant size or size hierarchies in experimental populations of the weedy annual Abutilon theophrasti Medic. (Malvaceae). Heterogeneity was imposed by alternating 8 × 8 × 10 cm blocks of low and high nutrient soil in a checkerboard design, while a homogeneous soil treatment consisted of a spatially uniform mixture of the two soil types (mixed soil). Populations were planted at three densities. The effect of soil type on the growth of individuals was determined through a bioassay experiment using potted plants. The high nutrient, low nutrient, and mixed soil differed in their ability to support plant growth as indicated by differences in growth rates and final aboveground biomass. Concentrations of N, K, P, and Mg, measured at the end of the growing season in the experimental plots, also differed among all three soil types. Nevertheless, nutrient heterogeneity had little effect at the population level. Mean maximum leaf width measured at midseason was greater for populations on heterogeneous soil, but soil treatment did not affect midseason measurements of plant height, total number of leaves per plant, or canopy width. Population density affected all these parameters except plant height. When aboveground biomass was harvested at the end of the growing season, soil treatment was found to have no main effect on mean plant biomass, total population biomass, the coefficient of variation in plant biomass, or the combined biomass of the five largest plants in the population, but mean plant biomass was greater for populations on heterogeneous soils at the intermediate planting density. Mean plant biomass, total population biomass, and the coefficient of variation in plant biomass all varied with planting density. Mortality was low overall but significantly higher on homogeneous soil across all three densities. Soil heterogeneity had its strongest effect on individuals. In heterogeneous treatments plant size depended on the location of the plant stem with respect to high and low nutrient patches. Thus, soil nutrient heterogeneity influenced whether particular individuals were destined to be dominant or subordinate within the population but had little effect on overall population structure.  相似文献   

16.
Phylogenetic relationships among gall-forming plant parasitic nematodes of the subfamily Anguininae are reconstructed by maximum parsimony and maximum likelihood analyses. Sequences of the ITS of rDNA from 53 populations and species of gall-forming nematodes and five populations of the Ditylenchus dipsaci species complex were analysed. The phylogenetic trees strongly support monophyly of the genus Anguina and show nonmonophyly for the genera Mesoanguina and Heteroanguina. Morphological and biological characters are generally congruent with the anguinid groups identified in the rDNA phylogeny. Analyses of evolution of different gall types among anguinids reveal that there are apparent evolutionary trends in gall evolution: from abnormal swelling and growth of infested plant organs toward small localised galls, and from infestation of vegetative toward generative organs. Our study demonstrates that the main anguinid groups are generally associated with host plants belonging to the same or related systematic groups. The comparison of the ITS phylogenies of anguinids parasitising Poaceae and their host grasses shows a high level of cospeciation events.  相似文献   

17.
Aims Little information has been available on the soil nitrogen transformation process of alpine scrubland under global warming and changing climate. This study aimed at clarifying seasonal dynamics of the soil nitrate and ammonium contents and their responses to increased temperature under different plant treatments. Methods We conducted a field experiment including two plant treatments (removal- or unremoval-plant) subjected to two temperature conditions (increased temperature or control) in Sibiraea angustata scrub ecosystem on the eastern Qinghai-Xizang Plateau. The contents of soil nitrate and ammonium were measured at the early, middle and late growing seasons. Important findings The results showed that soil nitrate and ammonium contents exhibited obvious seasonal dynamics. Throughout the entire growing season, the soil nitrate contents increased firstly and then decreased, while the soil ammonium contents increased continually. Particularly, in the early and middle growing season, the soil nitrate contents were significantly higher than those of ammonium, regardless of increased temperature and plant treatments; however, in the late growing season, the soil nitrate contents were significantly lower than those of ammonium. These results implied that soil nitrification was the major process of soil nitrogen transformation in the early and middle growing season; soil ammonification contributed mostly to soil nitrogen transformation in the late growing season. Furthermore, different responses of soil nitrate and ammonium contents to increased temperature and plant removal treatments were observed at the different stages in the growing season. The effects of increased temperature on soil nitrate contents mainly occurred in the middle and late growing season, but the effects varied with plant treatments. Increased temperature only significantly increased soil ammonium contents in the unremoval-plant plots during the middle growing season. The effects of plant treatments on soil nitrate contents only occurred in the control plots (controlled temperature). Plant removal only increased soil nitrate contents in the early and middle growing season, but significantly decreased soil nitrate contents in the late growing season. Plant removal significantly decreased soil ammonium contents in the increased temperature plots during the middle growing season. Probably, in the early and middle growing season, scrub vegetation mainly absorbed soil nitrate and the absorption process was not affected by increased temperature. These results would increase our understanding of the soil nitrogen cycling process in these alpine scrub ecosystems under global warming and changing climate. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

18.
Population densities of Pratylenchus scribneri in a Plainfield loamy sand soil were sampled from 1 October to 1 May for 4 years. From May to October of each year, the site was planted to Russet Burbank potato and Wis 4763 corn. Percentages of change in population densities of nematodes were computed on the basis of number of nematodes present on 1 October. The decline of P. scribneri between growing seasons was nonlinear, with most mortality occurring in the autumn before the soil froze. Winter survival, defined as the percentage of change in population densities from 1 October to 1 May the following year, ranged from 50 to 136% for nematodes in corn plots and from 15 to 86% for nematodes in potato plots. There was no difference in survival of nematodes of different life stages or among root and soil habitats. Winter survival of nematodes was density-dependent in 3 of 4 years in corn plots and in 1 of 4 years in potato plots. Although predators were present, their abundance was not correlated with the winter survival of nematodes. Cumulative and average snow cover was correlated with the survival of nematodes associated with corn but not with potato. No relationships between other climatic factors and survivorship were detected.  相似文献   

19.
Microcosm experiments showed that the microbial biomass and the respiration activity in soil were regulated by nematodes. Depending on nematode number and plant residue composition, the trophic activity of nematodes can either stimulate or inhibit microbial growth and respiration as compared to soil containing no nematodes. The stimulating effect was observed when nitrogen-free (starch) or low-nitrogen (wheat straw, C : N = 87) organic substrates were applied. Inhibition occurred when a substrate rich in nitrogen (alfalfa meal, C : N = 28) was decomposed and the nematode population exceeded the naturally occurring level. A conceptual model was developed to describe trophic regulation by microfauna (nematodes) of the microbial productivity and respiration ctivity and decomposition of not readily decomposable organic matter in soil. The stimulating and inhibiting influence of microfauna on soil microorganisms was not a linear function of the rate of microbial consumption by nematodes. These effects are largely associated with the induced change in the physiological state of microorganisms rather than with the mobilization of biogenic elements from the decomposed microbial biomass.  相似文献   

20.
Soil fumigation with dazomet, metam sodium, chloropicrin and chloropicrin + 1.3 D resulted in significant decrease of fungi and increase of bacteria populations in trials carried out in four farms located in different areas. Depending on the farm and the active substance applied, the fungi population was decreased by 1.4- to 3500-fold in comparison to control. Metam sodium and chloropicrin showed the best efficacy, both of them almost totally eliminated the fungi from the soil environment.The total number of bacteria was increased by the chemical fumigation with all tested products. While the population of fluorescent Pseudomonads in all treated plots increased from 2- to 100-fold, depending on the farm, the number of Bacillus spp. was not changed or decreased compared with non fumigated soil.The nematology analysis of the soil indicated that any chemical fumigant significantly limited the population of plant parasitic nematodes, which number was, anyway, below the damage threshold. However, in most cases dazomet and metam sodium reduced the total number of all nematodes present in the soil.The fumigation with chloropicrin and 1,3 D at dose of 30 g/m2 resulted in an increase of the total number of all nematodes in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号