首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant transformation, viaAgrobacterium tumefaciens, is usually performed with binary vectors. Most of the available binary vectors contain within the T-DNA (which is transferred to the plant genome) components not required for the intended modification. These additional sequences may cause potential risks during field testing of the transgenic plants or even more in the case of commercialization. The aim of this study was to produce a plant transformation vector which only contains a selectable and screenable marker gene and a multiple cloning site for insertion of promoter::foreign gene::terminator cassettes from other plasmids.  相似文献   

2.
Alternative selection systems for plant transformation are especially valuable in clonal crops, such as potato (Solanum tuberosum L.), to pyramid transgenes into the same cultivar by successive transformation events. We have modified the pGPTV series of binary vectors to construct pMOA1 to pMOA5, resulting in a series of essentially identical binary vectors except for the presence of different selectable marker genes. These selectable marker genes are tightly inserted between the left and right T-DNA borders and confer resistance to kanamycin (nptII), hygromycin (hpt), methotrexate (dhfr), phosphinothricin (bar), or phleomycin (ble). The T-DNA of all the vectors is based on the minimal features necessary for plant transformation, with no extraneous DNA segments that may be unacceptable to regulatory authorities for general release of transgenic plants. A series of unique restriction sites exists between the right border and each selectable marker gene for subsequent insertion of useful genes. We have also developed improved culture procedures for potato transformation and used the pMOA1 to pMOA5 binary vectors to define stringent selection conditions for each marker gene. Combining these advances improved the frequency of recovering transformed potato plants while maintaining a low frequency of escapes. The relative efficiency of recovering transgenic potato lines with each selectable marker gene can be summarised as: kanamycin resistance>hygromycin resistance>phosphinothricin resistance>phleomycin resistance>methotrexate resistance.  相似文献   

3.
pBECKS     
A series of binary T-DNA vectors (pBECKS) has been created for use in theAgrobacterium-mediated genetic transformation of plants. The pBECKS series has corrected the undesirable features of the popular pBIN19 vector; the deleterious mutation within the coding sequence ofnptII has been amended and the cloning sites are now adjacent to the right border repeat in order to reduce the possibility of producing truncated sequences of novel genes within transformants. One set of vectors incorporates various combiantions of the marker genesgusA,C1/Lc,nptII,hph, andbar, for pursuit of early and stable transformation events. A set of constructs which contain deleted T-DNA borders in various combinations and display predictably altered efficacies for gene transfer has also been created. A modular set of vectors has been designed to facilitate the insertion and transfer of novel gene sequences by providing anptII-linked plant expression cassette orlacZ-multiple cloning site. A range of antibiotic resistance genes has been incorporated into the non-T-DNA part of the vectors in order to facilitate their selection across the range ofAgrobacterium virulence strains.  相似文献   

4.
For regulatory issues and research purposes it would be desirable to have the ability to segregate transgenes in co-transformed maize. We have developed a highly efficient system to segregate transgenes in maize that was co-transformed using an Agrobacterium tumefaciens 2 T-DNA binary system. Three vector treatments were compared in this study; (1) a 2 T-DNA vector, where the selectable marker gene bar (confers resistance to bialaphos) and the -glucuronidase (GUS) reporter gene are on two separate T-DNA's contained on a single binary vector; (2) a mixed strain treatment, where bar and GUS are contained on single T-DNA vectors in two separate Agrobacterium strains; (3) and a single T-DNA binary vector containing both bar and GUS as control treatment. Bialaphos resistant calli were generated from 52 to 59% of inoculated immature embryos depending on treatment. A total of 93.4% of the bialaphos selected calli from the 2 T-DNA vector treatment exhibited GUS activity compared to 11.7% for the mixed strain treatment and 98.2% for the cis control vector treatment. For the 2 T-DNA vector treatment, 86.7% of the bialaphos resistant/GUS active calli produced R0 plants exhibiting both transgenic phenotypes compared to 10% for the mixed strain treatment and 99% for the single T-DNA control vector treatment. A total of 87 Liberty herbicide (contains bialaphos as the active ingredient) resistant/GUS active R0 events from the 2 T-DNA binary vector treatment were evaluated for phenotypic segregation of these traits in the R1 generation. Of these R0 events, 71.4% exhibited segregation of Liberty resistance and GUS activity in the R1 generation. A total of 64.4% of the R0 2 T-DNA vector events produced Liberty sensitive/GUS active (indicating selectable-marker-free) R1 progeny. A high frequency of phenotypic segregation was also observed using the mixed strain approach, but a low frequency of calli producing R0 plants displaying both transgenic phenotypes makes this method less efficient. Molecular analyses were then used to confirm that the observed segregation of R1 phenotypes were highly correlated to genetic segregation of the bar and GUS genes. A high efficiency system to segregate transgenes in co-transformed maize plants has now been demonstrated.  相似文献   

5.
Summary We describe in this paper the construction and use of a set of novel Ti plasmid-derived vectors that can be used to produce transgenic plants. These vectors are based on one of two strategies: 1) double recombination into the wild-type Ti plasmid of genetic information flanked by two T-DNA fragments on a wide-host range plasmid; 2) the binary vector strategy. The vector based on the double recombination principle contains a kanamycin resistance gene for use as a plant selectable marker, a polylinker for the insertion of foreign genes, and a nopaline synthase gene. The vector was constructed such that a disarmed T-DNA results from the double recombination event. The binary vector combines several advantageous features including an origin of replication that is stable in Agrobacterium in the absence of selection, six unique sites for insertion of foreign genes, an intact nopaline synthase gene, and a kanamycin resistance marker for selection of transformed plant cells. All of these vectors have been used to produce tobacco plants transformed with a variety of foreign genes.  相似文献   

6.
7.
The co-transformation of a single plant genome with two independent T-DNA regions provides opportunities for genetic separation in subsequent generations. In an effective strategy, co-delivery events must form a high proportion of the total transformed population. In this study, using the model plant species tobacco (Nicotiana tabacum), it was shown that the frequency of co-transformation within a given T0 population could be as high as 100% and this was found to be dependent, at least in part, on designing the plasmid vectors so that the kbp size of the first selected T-DNA region was >2-fold that of the designated T-DNA region for co-transfer. Overall, 40–50% of T0 lines demonstrated the capacity for segregational separation of co-transformed T-DNA regions. Hence, the estimate of the required number of total transformants for such an independent strategy may seem to be as little as 2-fold that for a conventional, single T-DNA strategy, but we strongly temper such estimates with indications that high co-transformation frequencies may be associated with a higher incidence of linkage. In this co-transformation study we used a single (Agrobacterium) strain system in which a single binary plasmid contained either two or three T-DNA regions, each with a selectable marker. This arrangement could reveal that read-through events within the Agrobacterium cells, resulting in the co-transfer of adjacent T-DNA regions as a single linked unit, accounted for up to 20% of co-transformed plant lines. Such read-through co-delivery appeared to be more frequent from the supervirulent EHA101 A. tumefaciens strain, compared to the ordinary LBA4404 strain. By using the binary plasmid with three selectable T-DNA regions, we have been able to consider the frequency of co-integration of a third independent T-DNA within a T0 subpopulation of co-transformants. This was found to be higher than expected. These observations were applied to the co-transfer of (unwanted) plasmid backbone sequences and showed that screening against such sequences may add a significant factor in achieving the desired, final genotype.  相似文献   

8.
A system for genetic transformation of Coffea canephora by co-cultivation with Agrobacterium rhizogenes harbouring a binary vector has been developed. The objective of the present study was the genetic transformation and direct regeneration of transformants through secondary embryos bypassing an intervening hairy root stage. Transformants were obtained with a transformation efficiency up to 3% depending on the medium adjuvant used. A. rhizogenes strain A4 harbouring plasmid pCAMBIA 1301 with an intron uidA reporter and hygromycin phosphotransferase (hptII) marker gene was used for sonication-assisted transformation of Coffea canephora. The use of hygromycin in the secondary embryo induction medium allowed the selection of transgenic secondary embryos having Ri T-DNA along with the T-DNA from the pCAMBIA 1301 binary vector. In addition transgenic secondary embryos devoid of Ri-T-DNA but with stable integration of the T-DNA from the binary vector were obtained. The putative transformants were positive for the expression of the uidA gene. PCR and Southern blot analysis confirmed the independent, transgenic nature of the analysed plants and indicated single and multiple locus integrations. The study clearly demonstrates that A. rhizogenes can be used for delivering transgenes into tree species like Coffea using binary vectors with Agrobacterium tumefaciens T-DNA borders.  相似文献   

9.
We have constructed a binary vector for Agrobacterium-mediated plant transformation, which has a multiple cloning site consisting of 13 hexanucleotide restriction sites, 6 octanucleotide restriction sites and 5 homing endonuclease sites. The homing endonuclease sites have the advantages to be extremely rare in natural sequences and to allow unidirectional cloning. We have also constructed a set of auxiliary vectors allowing the assembly of expression cassettes flanked by homing endonuclease sites. The expression cassettes assembled in these auxiliary vectors can be transferred into the binary vector with virtually no risk of cutting the vector within previously introduced sequences. This vector set is ideally suited for the construction of plant transformation vectors containing multiple expression cassettes and/or other elements such as matrix attachment regions. With this modular vector system, six different expression units were constructed in as many auxiliary vectors and assembled together in one plant transformation vector. The transgenic nature of Arabidopsis thaliana plants, transformed with this plant transformation vector, was assessed and the expression of each of the six genes was demonstrated.  相似文献   

10.
High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation process employs low-salt media in combined use with antioxidant l-cysteine alone or l-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12% overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic engineering studies including transformation-based functional genomics.  相似文献   

11.
A binary vector, designated PROGMO, was constructed to assess the potential of the Zygosaccharomyces rouxii R/Rs recombination system for generating marker- and backbone-free transgenic potato (Solanum tuberosum) plants with high transgene expression and low copy number insertion. The PROGMO vector utilises a constitutively expressed plant-adapted R recombinase and a codA-nptII bi-functional, positive/negative selectable marker gene. It carries only the right border (RB) of T-DNA and consequently the whole plasmid will be inserted as one long T-DNA into the plant genome. The recognition sites (Rs) are located at such positions that recombinase enzyme activity will recombine and delete both the bi-functional marker genes as well as the backbone of the binary vector, leaving only the gene of interest flanked by a copy of Rs␣and RB. Efficiency of PROGMO transformation was tested by introduction of the GUS reporter gene into potato. It was shown that after 21 days of positive selection and using 300 mgl−1 5-fluorocytosine for negative selection, 29% of regenerated shoots carried only the GUS gene flanked by a copy of Rs and RB. The PROGMO vector approach is simple and might be widely applicable for the production of marker- and backbone-free transgenic plants of many crop species.  相似文献   

12.
13.
Different patterns of T-DNA integration in Arabidopsis were obtained that depended on whether a root or a leaf-disc transformation method was used. An examination of 82 individual transgenic Arabidopsis plants, derived from 15 independent Agrobacterium-mediated transformations in which different cointegrate and binary constructs were used, indicated that the transformation method had a significant influence on the type and copy number of T-DNA integration events. Southern hybridizations showed that most of the transgenic plants produced by a leaf-disc method contained multiple T-DNA insertions (89%), the majority of which were organized as right-border inverted repeat structures (58%). In contrast, a root transformation method mostly resulted in single T-DNA insertions (64%), with fewer right-border inverted repeats (38%). The transformation vectors, including cointegrate and binary types, and the plant selectable markers, hygromycin phosphotransferase and dihydrofolate reductase, did not appear to influence the T-DNA integration patterns.  相似文献   

14.
15.
Nineteen transgenic banana plants, produced via Agrobacterium-mediated transformation, were analyzed for the integration of T-DNA border regions using an improved anchored PCR technique. The method described is a relatively fast, three-step procedure (restriction digestion of genomic DNA, ligation of ‘vectorette’-type adaptors, and a single round of suppression PCR) for the amplification of specific T-DNA border-containing genomic fragments. Most transgenic plants carried a low number of inserts and the method was suitable for a detailed characterization of the integration events, including T-DNA border integrity as well as the insertion of non-T-DNA vector sequences, which occurred in 26% of the plants. Furthermore, the particular band pattern generated by four enzyme/primer combinations for each individual plant served as a fingerprint, allowing the identification of plants representing identical transformation events. Genomic Southern hybridization and nucleotide sequence analysis of amplification products confirmed the data obtained by anchored PCR. Sequencing of seven right or left border junction regions revealed different T-DNA processing events for each plant, indicating a relatively low frequency of precisely nicked T-DNA integration among the plants studied.  相似文献   

16.
We assessed the effect of four different virulence (vir) gene combinations on plant transformation efficiency and transgene behaviour in rice using the pGreen/pSoup dual binary vector system. Transformation experiments were conducted using a pGreen vector containing the bar and gusA expression units with, or without, the virG542, virGN54D, virGwt or the virG/B/C genes added to the backbone. Additonal vir gene(s) significantly altered plant transformation efficiency and the integration of vector backbone sequences. However, no differences in transgene copy number, percentage of expressing lines and expression levels could be detected. Addition of virGwt was the most beneficial, doubling the overall performance of the pGreen/pSoup vector system based on transformation frequency, absence of backbone sequence integration and expression of unselected transgenes. In 39 of the plant lines, the additional vir genes were integrated into the rice genome. The contribution of super dual binary pGreen/pSoup vectors to the development of efficient rice transformation systems and to the production of plants free of selectable marker genes are discussed.  相似文献   

17.
Here we report an approach to generate a knock-in mouse model using an ‘ends-out’ gene replacement vector to substitute the murine Parp-1 (mParp-1) coding sequence (32 kb) with its human orthologous sequence (46 kb). Unexpectedly, examination of mutant ES cell clones and mice revealed that site-specific homologous recombination was mimicked in three independently generated ES cell clones by bidirectional extension of the vector homology arms using the endogenous mParp-1-flanking sequences as templates. This was followed by adjacent integration of the targeting vector, thus leaving the endogenous mParp-1 locus functional. A related phenomenon termed ‘ectopic gene targeting’ has so far only been described for ‘ends-in’ integration-type vectors in non-ES cell gene targeting. We provide reliable techniques to detect such ectopic gene targeting which represents an unexpected caveat in mouse genetic engineering that should be considered in the design and validation strategy of future gene knock-in approaches. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Summary A binary vector, pPTN133, was assembled that harbored two separate T-DNAs. T-DNA one contained a bar cassette, while T-DNA two carried a GUS cassette. The plasmid was mobilized into the Agrobacterium tumefaciens strain EHA101. Mature soybean cotyledonary node explants were inoculated and regenerated on medium amended with glufosinate. Transgenic soybeans were grown to maturity in the greenhouse. Fifteen primary transformants (T0) representing 10 independent events were characterized. Seven of the 10 independent T0 events co-expressed GUS. Progeny analysis was conducted by sowing the T1 seeds and monitoring the expression of the GUS gene after 21 d. Individual T1 plants were subsequently scored for herbicide tolerance by leaf painting a unifoliate leaf with a 100 mgl−1 solution of glufosinate and scoring the leaf 5 d post application. Herbicide-sensitive and GUS-positive individuals were observed in four of the 10 independent events. Southern blot analysis confirmed the absence of the bar gene in the GUS positive/herbicide-sensitive individuals. These results demonstrate that simultaneous integration of two T-DNAs followed by their independent segregation in progeny is a viable means to obtain soybeans that lack a selectable marker.  相似文献   

19.
20.
We report the construction of two Gateway fungal expression vectors pCBGW and pGWBF. The pCBGW was generated by introducing an expression cassette, which consists of a Gateway recombinant cassette (attR1-Cmr-ccdB-attR2) under the control of fungal promoter PgpdA and a terminator TtrpC, into the multiple cloning site of fungal vector pCB1004. The pGWBF is a binary vector, which was generated from the plant expression vector pGWB2 by replacing the CaMV35S promoter with PgpdA. The pGWBF can be transformed into fungi efficiently with Agrobacterium-mediated transformation. The applicability of two newly constructed vectors was tested by generating the destination vectors pGWBF-GFP and pCBGW-GFP and examining the expression of GFP gene in Trichoderma viride and Gibberella fujikuroi, respectively. Combining with the advantage of Gateway cloning technology, pCBGW and pGWBF will be useful in fungi for large-scale investigation of gene functions by constructing the interested gene destination/expression vectors in a high-throughput way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号