首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proliferation of muscle satellite cells on intact myofibers in culture   总被引:18,自引:0,他引:18  
Muscle satellite cells are quiescent myogenic stem cells situated between the basal lamina and plasmalemma of mature skeletal muscle fibers. Injury to the fiber triggers the activation and proliferation of satellite cells whose progeny subsequently fuse to form new myotubes during regeneration. In this paper we report the proliferation of satellite cells on single muscle fibers isolated from adult rats and placed in culture. Viable fibers were liberated from muscle with collagenase and purified from non-muscle cells. The fibers were covered with a basal lamina and retained normal morphological characteristics. Each fiber contained two to three satellite cells per 100 myonuclei. Satellite cells showed little proliferative activity in medium with 10% serum but could be induced to enter the cell cycle by chick embryo extract or fibroblast growth factor. Other polypeptide mitogens such as epidermal growth factor, multiplication stimulating activity, and platelet-derived growth factor were ineffective. Mitogen-stimulated satellite cells fused to form new myotubes after 4-5 days in culture. These results imply that satellite cells are under positive growth control since they proliferate in contact with viable mature fibers when stimulated with mitogen. The mature fibers remained viable in culture but did not give rise to mononucleated cells. After several days, however, the fibers began to extend sarcoplasmic sprouts and underwent dedifferentiative changes that led to the formation of multinucleated cells resembling myotubes. These cells reexpressed embryonic isozymes of creatine kinase not made by the mature fibers.  相似文献   

2.
Satellite cells are situated beneath the basal lamina that surrounds each myofiber and function as myogenic precursors for muscle growth and repair. The source of satellite cell renewal is controversial and has been suggested to be a separate circulating or interstitial stem cell population. Here, we transplant single intact myofibers into radiation-ablated muscles and demonstrate that satellite cells are self-sufficient as a source of regeneration. As few as seven satellite cells associated with one transplanted myofiber can generate over 100 new myofibers containing thousands of myonuclei. Moreover, the transplanted satellite cells vigorously self-renew, expanding in number and repopulating the host muscle with new satellite cells. Following experimental injury, these cells proliferate extensively and regenerate large compact clusters of myofibers. Thus, within a normally stable tissue, the satellite cell exhibits archetypal stem cell properties and is competent to form the basal origin of adult muscle regeneration.  相似文献   

3.
4.
A major impediment to successful implementation of gene therapy for treatment of muscular dystrophy is the restricted infectivity of mature muscle fibers with viral vectors. This phenomenon has been observed with adenovirus vectors and more recently with herpes simplex virus type 1 (HSV-1)-based vectors. Here we report findings of morphological studies designed to experimentally determine the mechanism underlying the rapid reduction in vector-mediated gene delivery concomitant with the maturation of muscle fibers. Using immunohistochemistry and confocal microscopy, we have colocalized HSV-1 and collagen IV, a major component of the basal lamina, in HSV-1-injected muscles and determined that the virus penetrates and expresses a transgene (lacZ) in muscle fibers of newborn animals but cannot efficiently penetrate adult myofibers. This was observed in normal as well as in immunocompromised animals, suggesting that the lack of adult myofiber transduction is not a result of an immune response and clearance of the viral vector. Since heparan sulfate proteoglycan, the initial attachment receptor for HSV-1, was shown to be preserved during the maturation of the myofibers by immunofluorescence assay and HSV-1 was able to infect isolated, viable myofibers in vitro, we suggest that the low-level HSV-1 transduction of mature myofibers is not a consequence of the loss of viral attachment sites on the surfaces of mature muscle fibers. Rather, our results indicate that the mature basal lamina acts as a physical barrier to HSV-1 infection of adult myofibers. This conclusion was further supported by the finding that HSV-1 displayed an intermediate level of transduction in mature dy/dy muscle which is defective for normal basal lamina formation. Together, these experiments suggest that efficient HSV vector transduction in mature skeletal muscle requires methods to permeabilize the basal lamina.  相似文献   

5.
Muscle growth occurs during embryonic development and continues in adult life as regeneration. During embryonic muscle growth and regeneration in mature muscle, singly nucleated myoblasts fuse to each other to form myotubes. In muscle growth, singly nucleated myoblasts can also fuse to existing large, syncytial myofibers as a mechanism of increasing muscle mass without increasing myofiber number. Myoblast fusion requires the alignment and fusion of two apposed lipid bilayers. The repair of muscle plasma membrane disruptions also relies on the fusion of two apposed lipid bilayers. The protein dysferlin, the product of the Limb Girdle Muscular Dystrophy type 2 locus, has been shown to be necessary for efficient, calcium-sensitive, membrane resealing. We now show that the related protein myoferlin is highly expressed in myoblasts undergoing fusion, and is expressed at the site of myoblasts fusing to myotubes. Like dysferlin, we found that myoferlin binds phospholipids in a calcium-sensitive manner that requires the first C2A domain. We generated mice with a null allele of myoferlin. Myoferlin null myoblasts undergo initial fusion events, but they form large myotubes less efficiently in vitro, consistent with a defect in a later stage of myogenesis. In vivo, myoferlin null mice have smaller muscles than controls do, and myoferlin null muscle lacks large diameter myofibers. Additionally, myoferlin null muscle does not regenerate as well as wild-type muscle does, and instead displays a dystrophic phenotype. These data support a role for myoferlin in the maturation of myotubes and the formation of large myotubes that arise from the fusion of myoblasts to multinucleate myotubes.  相似文献   

6.
Cell cycle commitment of rat muscle satellite cells   总被引:6,自引:0,他引:6       下载免费PDF全文
Satellite cells of adult muscle are quiescent myogenic stem cells that can be induced to enter the cell cycle by an extract of crushed muscle (Bischoff, R. 1986. Dev. Biol. 115:140-147). Here, evidence is presented that the extract acts transiently to commit cells to enter the cell cycle. Satellite cells associated with both live and killed rat myofibers in culture were briefly exposed to muscle extract and the increase in cell number was determined at 48 h in vitro, before the onset of fusion. An 8-12-h exposure to extract with killed, but not live, myofibers was sufficient to produce maximum proliferation of satellite cells. Continuous exposure for over 40 h was needed to sustain proliferation of satellite cells on live myofibers. The role of serum factors was also studied. Neither serum nor muscle extract alone was able to induce proliferation of satellite cells. In the presence of muscle extract, however, satellite cell proliferation was directly proportional to the concentration of serum in the medium. These results suggest that mitogens released from crushed muscle produce long-lasting effects that commit quiescent satellite cells to divide, whereas serum factors are needed to maintain progression through the cell cycle. Contact with a viable myofiber modulates the response of satellite cells to growth factors.  相似文献   

7.
8.
Skeletal muscle growth and regeneration rely on myogenic progenitor and satellite cells, the stem cells of postnatal muscle. Elimination of Notch signals during mouse development results in premature differentiation of myogenic progenitors and formation of very small muscle groups. Here we show that this drastic effect is rescued by mutation of the muscle differentiation factor MyoD. However, rescued myogenic progenitors do not assume?a satellite cell position and contribute poorly to myofiber growth. The disrupted homing is due to a deficit in basal lamina assembly around emerging satellite cells and to their impaired adhesion to myofibers. On a molecular level, emerging satellite cells deregulate the expression of basal lamina components and adhesion molecules like integrin α7, collagen XVIIIα1, Megf10, and Mcam. We conclude that Notch signals control homing of satellite cells, stimulating them to?contribute to their own microenvironment and to adhere to myofibers.  相似文献   

9.
《The Journal of cell biology》1984,98(4):1453-1473
If skeletal muscles are damaged in ways that spare the basal lamina sheaths of the muscle fibers, new myofibers develop within the sheaths and neuromuscular junctions form at the original synaptic sites on them. At the regenerated neuromuscular junctions, as at the original ones, the muscle fiber plasma membrane is characterized by infoldings and a high concentration of acetylcholine receptors (AChRs). The aim of this study was to determine whether or not the synaptic portion of the myofiber basal lamina sheath plays a direct role in the formation of the subsynaptic apparatus on regenerating myofibers, a question raised by the results of earlier experiments. The junctional region of the frog cutaneous pectoris muscle was crushed or frozen, which resulted in disintegration and phagocytosis of all cells at the synapse but left intact much of the myofiber basal lamina. Reinnervation was prevented. When new myofibers developed within the basal lamina sheaths, patches of AChRs and infoldings formed preferentially at sites where the myofiber membrane was apposed to the synaptic region of the sheaths. Processes from unidentified cells gradually came to lie on the presynaptic side of the basal lamina at a small fraction of the synaptic sites, but there was no discernible correlation between their presence and the effectiveness of synaptic sites in accumulating AChRs. We therefore conclude that molecules stably attached to the myofiber basal lamina at synaptic sites direct the formation of subsynaptic apparatus in regenerating myofibers. An analysis of the distribution of AChR clusters at synaptic sites indicated that they formed as a result of myofiber-basal lamina interactions that occurred at numerous places along the synaptic basal lamina, that their presence was not dependent on the formation of plasma membrane infoldings, and that the concentration of receptors within clusters could be as great as the AChR concentration at normal neuromuscular junctions.  相似文献   

10.
The satellite cell compartment provides skeletal muscle with a remarkable capacity for regeneration. Here, we have used isolated myofibers to investigate the activation and proliferative potential of satellite cells. We have previously shown that satellite cells are heterogeneous: the majority express Myf5 and M-cadherin protein, presumably reflecting commitment to myogenesis, while a minority is negative for both. Although MyoD is rarely detected in quiescent satellite cells, over 98% of satellite cells contain MyoD within 24 h of stimulation. Significantly, MyoD is only observed in cells that are already expressing Myf5. In contrast, a minority population does not activate by the criteria of Myf5 or MyoD expression. Following the synchronous activation of the myogenic regulatory factor+ve satellite cells, their daughter myoblasts proliferate with a doubling time of approximately 17 h, irrespective of the fiber type (type I, IIa, or IIb) from which they originate. Although fast myofibers have fewer associated satellite cells than slow, and accordingly produce fewer myoblasts, each myofiber phenotype is associated with a complement of satellite cells that has sufficient proliferative potential to fully regenerate the parent myofiber within 4 days. This time course is similar to that observed in vivo following acute injury and indicates that cells other than satellite cells are not required for complete myofiber regeneration.  相似文献   

11.
Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis   总被引:9,自引:0,他引:9       下载免费PDF全文
We assessed viable Pax7(-/-) mice in 129Sv/J background and observed reduced growth and marked muscle wasting together with a complete absence of functional satellite cells. Acute injury resulted in an extreme deficit in muscle regeneration. However, a small number of regenerated myofibers were detected, suggesting the presence of residual myogenic cells in Pax7-deficient muscle. Rare Pax3(+)/MyoD+ myoblasts were recovered from Pax7(-/-) muscle homogenates and cultures of myofiber bundles but not from single myofibers free of interstitial tissues. Finally, we identified Pax3+ cells in the muscle interstitial environment and demonstrated that they coexpressed MyoD during regeneration. Sublaminar satellite cells in hind limb muscle did not express detectable levels of Pax3 protein or messenger RNA. Therefore, we conclude that interstitial Pax3+ cells represent a novel myogenic population that is distinct from the sublaminar satellite cell lineage and that Pax7 is essential for the formation of functional myogenic progenitors from sublaminar satellite cells.  相似文献   

12.
Adult skeletal muscle is able to repeatedly regenerate because of the presence of satellite cells, a population of stem cells resident beneath the basal lamina that surrounds each myofiber. Little is known, however, of the signaling pathways involved in the activation of satellite cells from quiescence to proliferation, a crucial step in muscle regeneration. We show that sphingosine-1-phosphate induces satellite cells to enter the cell cycle. Indeed, inhibiting the sphingolipid-signaling cascade that generates sphingosine-1-phosphate significantly reduces the number of satellite cells able to proliferate in response to mitogen stimulation in vitro and perturbs muscle regeneration in vivo. In addition, metabolism of sphingomyelin located in the inner leaflet of the plasma membrane is probably the main source of sphingosine-1-phosphate used to mediate the mitogenic signal. Together, our observations show that sphingolipid signaling is involved in the induction of proliferation in an adult stem cell and a key component of muscle regeneration.  相似文献   

13.
Satellite cells are the myogenic precursors in postnatal muscle and are situated beneath the myofiber basement membrane. We previously showed that fibroblast growth factor 2 (FGF2, basic FGF) stimulates a greater number of satellite cells to enter the cell cycle but does not modify the overall schedule of a short proliferative phase and a rapid transition to the differentiated state as the satellite cells undergo myogenesis in isolated myofibers. In this study we investigated whether other members of the FGF family can maintain the proliferative state of the satellite cells in rat myofiber cultures. We show that FGF1, FGF4, and FGF6 (as well as hepatocyte growth factor, HGF) enhance satellite cell proliferation to a similar degree as that seen with FGF2, whereas FGF5 and FGF7 are ineffective. None of the growth factors prolongs the proliferative phase or delays the transition of the satellite cells to the differentiating, myogenin(+) state. However, FGF6 retards the rapid exit of the cells from the myogenin(+) state that routinely occurs in myofiber cultures. To determine which of the above growth factors might be involved in regulating satellite cells in vivo, we examined their mRNA expression patterns in cultured rat myofibers using RT-PCR. The expression of all growth factors, excluding FGF4, was confirmed. Only FGF6 was expressed at a higher level in the isolated myofibers and not in the connective tissue cells surrounding the myofibers or in satellite cells dissociated away from the muscle. By Western blot analysis, we also demonstrated the presence of FGF6 protein in the skeletal musle tissue. Our studies therefore suggest that the myofibers serve as the main source for the muscle FGF6 in vivo. We also used RT-PCR to analyze the expression patterns of the four tyrosine kinase FGF receptors (FGFR1-FGFR4) and of the HGF receptor (c-met) in the myofiber cultures. Depending on the time in culture, expression of all receptors was detected, with FGFR2 and FGFR3 expressed only at a low level. Only FGFR4 was expressed at a higher level in the myofibers but not the connective tissue cell cultures. FGFR4 was also expressed at a higher level in satellite cells compared to the nonmyogenic cells when the two cell populations were released from the muscle tissue and fractionated by Percoll density centrifugation. The unique localization patterns of FGF6 and FGFR4 may reflect specific roles for these members of the FGF signaling complex during myogenesis in adult skeletal muscle.  相似文献   

14.
Satellite cells represent a heterogeneous population of stem and progenitor cells responsible for muscle growth, repair and regeneration. We investigated whether c-Myb could play a role in satellite cell biology because our previous results using satellite cell-derived mouse myoblast cell line C2C12 showed that c-Myb was expressed in growing cells and downregulated during differentiation. We detected c-Myb expression in activated satellite cells of regenerating muscle. c-Myb was also discovered in activated satellite cells associated with isolated viable myofiber and in descendants of activated satellite cells, proliferating myoblasts. However, no c-Myb expression was detected in multinucleated myotubes originated from fusing myoblasts. The constitutive expression of c-Myb lacking the 3′ untranslated region (3′ UTR) strongly inhibited the ability of myoblasts to fuse. The inhibition was dependent on intact c-Myb transactivation domain as myoblasts expressing mutated c-Myb in transactivation domain were able to fuse. The absence of 3′ UTR of c-Myb was also important because the expression of c-Myb coding region with its 3′ UTR did not inhibit myoblast fusion. The same results were repeated in C2C12 cells as well. Moreover, it was documented that 3′ UTR of c-Myb was responsible for downregulation of c-Myb protein levels in differentiating C2C12 cells. DNA microarray analysis of C2C12 cells revealed that the expression of several muscle-specific genes was downregulated during differentiation of c-Myb-expressing cells, namely: ACTN2, MYH8, TNNC2, MYOG, CKM and LRRN1. A detailed qRT-PCR analysis of MYOG, TNNC2 and LRRN1 is presented. Our findings thus indicate that c-Myb is involved in regulating the differentiation program of myogenic progenitor cells as its expression blocks myoblast fusion.  相似文献   

15.
16.
The skeletal framework of cells, composed of internal structural fibers, microtrabeculae, and the surface lamina, is revealed with great clarity after extraction with detergent. When muscle cells fuse to form a multinucleated myotube, their skeletal framework reorganizes extensively. When myoblasts prepare to fuse, the previously continuous surface lamina develops numerous lacunae unique to this stage. The retention of iodinated surface proteins suggests that the lacunae are not formed by the extraction of lamina proteins. The lacunae appear to correspond to extensive patches that do not bind concanavalin A and are probably regions of lipid bilayer devoid of glycoproteins. The lacunae appear to be related to fusion and disappear rapidly after the multinucleated myotube is formed. When muscle cells fuse, their internal structural networks must interconnect to form the framework of the myotube. Transmission electron microscopy of skeletal framework whole mounts shows that proliferating myoblasts have well developed and highly interconnected internal networks. Immediately before fusion, these networks are extensively reorganized and destabilized. After fusion, a stable, extensively cross-linked internal structure is reformed, but with a morphology characteristic of the myotube. Muscle cells therefore undergo extensive reorganization both on the surface and internally at the time of fusion.  相似文献   

17.

Background

The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors.

Results

Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation.

Conclusion

Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism.  相似文献   

18.
Growth of embryonic skeletal muscle occurs by fusion of multinucleated myotubes with differentiated, fusion-capable myoblasts. Selective recognition seems to prevent fusion of myotubes with nonmyogenic cells such as muscle fibroblasts, endothelial cells, or nerve cells, but the nature of the signal is as yet unknown. Here we provide evidence that one of the selection mechanisms may be the enhanced affinity for laminin of myogenic cells as compared to fibrogenic cells. Growing myotubes in myoblast cultures accumulate laminin and type IV collagen on their surface in patches and strands as the first step in assembling a continuous basal lamina on mature myofibers (U. Kühl, R. Timpl, and K. von der Mark (1982), Dev. Biol. 93, 344-359). Fibronectin, on the other hand, assembles into an intercellular fibrous meshwork not associated with the free myotube surface. Over a brief time period (10-20 min) myoblasts from embryonic mouse thigh muscle adhere faster to laminin than do fibroblasts from the same tissue; these adhere faster to fibronectin. When a mixture of the cells is plated for 20 min on laminin/type IV collagen substrates, only myogenic cells adhere, giving rise to cultures with more than 90% fusion after 2 weeks; on fibronectin/type I collagen in the same time primarily fibroblastic cells adhere, giving rise to cultures with less than 10% nuclei in myotubes. The differential affinities of myoblasts for basement membrane constituents and of fibroblasts for interstitial connective tissue components may play a role in sorting out myoblasts from fibroblasts in skeletal muscle development.  相似文献   

19.
Two distinct populations of myoblasts, distinguishable by alpha7 integrin expression have been hypothesized to give rise to two phases of myofiber formation in embryonic limb development. We show here that alpha7 integrin is detectable far earlier than previously reported on both "primary" and "secondary" lineage myoblasts and myofibers. An antibody (1211) that recognizes an intracellular epitope allowed detection of alpha7 integrin previously missed using an antibody (H36) that recognizes an extracellular epitope. We found that when myoblasts were isolated and cultured from different developmental stages, H36 only detected alpha7 integrin that was in direct contact with its ligand, laminin. Moreover, alpha7 integrin detection by H36 was reversible and highly localized to subcellular points of contact between myoblasts and laminin-coated 2.8-microm microspheres. Prior to secondary myofiber formation in limb embryogenesis, laminin was present but not in close proximity to clusters of primary myofibers that expressed alpha7 integrin detected by antibody 1211 using deconvolution microscopy. These results suggest that the timing of the interaction of preexisting alpha7 integrin with its ligand, laminin, is a major determinant of allosteric changes that result in an activated form of alpha7 integrin capable of transducing signals from the extracellular matrix commensurate with secondary myofiber formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号