首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Background and Aims Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs.Methods In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log–log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made.Key Results The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants.Conclusions The results support the AP theory’s prediction that MA scales nearly one-to-one with MR (i.e. MAMR≈1·0) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents of the MA vs. MR relationship. This feature of the results suggests that plant size is the primary driver of the MA vs. MR biomass allocation pattern for understorey plants in sub-tropical forests.  相似文献   

3.
Aim To examine the species richness of breeding birds along a local elevational gradient and to test the following assumptions of the energy limitation hypothesis: (1) the energy flux through birds is positively correlated with above‐ground net primary productivity, (2) bird density is positively correlated with total energy flux, and (3) bird species richness is positively correlated with bird density. Location An elevational gradient from 1400 to 3700 m on Mt. Yushan, the highest mountain in Taiwan (23°28′30″ N, 120°54′00″ E), with a peak of 3952 m a.s.l. Methods We established 50 sampling stations along the elevational gradient. From March to July 1992, we estimated the density of each bird species using the variable circular‐plot method. Above‐ground net primary productivity was modelled using monthly averages from weather data for the years 1961–90. Results Bird species richness had a hump‐shaped relationship with elevation and with net primary productivity. Bird energy flux was positively correlated with net primary productivity and bird species richness was positively correlated with bird density. The relationship between bird density and energy flux was hump‐shaped, which does not support one assumption of the energy limitation hypothesis. Main conclusions The results supported two essential assumptions of the energy limitation hypothesis. However, when energy availability exceeded a certain level, it could decrease species richness by increasing individual energy consumption, which reduced bird density. Thus, energy availability is a primary factor influencing bird species richness at this scale, but other factors, such as body size, could also play important roles.  相似文献   

4.
庐山不同海拔森林土壤有机碳密度及分布特征   总被引:16,自引:0,他引:16  
Du YX  Wu CJ  Zhou SX  Huang L  Han SM  Xu XF  Ding Y 《应用生态学报》2011,22(7):1675-1681
为阐明地处中亚热带北部的庐山森林土壤有机碳沿海拔梯度的分布特征,2010年7—8月,分别在庐山的南、北坡按200 m的高差选择6个和5个不同海拔采样点,分层(0~10、10~20、20~30、30~40和>40 cm)采集土样,测定土壤容重、有机碳含量及有机碳密度.结果表明:海拔和坡向显著影响森林土壤有机碳密度.在北坡,随海拔升高,土壤有机碳呈逐渐增加趋势,土壤有机碳含量与土壤容重和pH值呈显著负相关关系;在南坡则没有明显规律.随土层加深,土壤有机碳逐渐下降.北坡和南坡土壤有机碳密度分别为7.07~10.34 kg.m-2和6.03~12.89 kg.m-2.南坡土壤有机碳密度随海拔梯度和土层深度变化的变异性较大,原始植被的破坏和人工林的建立可能是影响土壤有机碳空间分布的重要因素之一.  相似文献   

5.
Background and AimsLessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory?MethodsWe sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species.Key ResultsRoot traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory.ConclusionsOne of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.  相似文献   

6.
应用样线法对放牧对内蒙古草原沿水分梯度分布的主要植物群落:小针茅(Stipaklemenzii)群落、大针茅(Stipagrandis)群落、羊草(Leymuschinensis)群落和羊草杂类草群落多样性、生产力以及两者关系的影响进行了研究,结果表明,除羊草杂类草群落外,物种多样性、生活型多样性和水分生态类型多样性随放牧强度的加大而降低,但适度放牧增加了羊草杂类草群落的上述多样性指标。群落地上现存量一般随放牧强度的增大而下降,但小针茅群落反之,主要与1年生植物猪毛菜(Salsolacollina)的生物量迅速增加有关。除羊草群落外,其他群落0~10cm地下生物量随放牧强度的变化不显著;放牧显著降低羊草群落和羊草杂类草群落0~30cm地下生物量。多样性和生产力间的关系在群落水平上的趋势是不同的,但放牧影响下内蒙古草原4种群落多样性与生产力总体而言呈线性增加关系;同时两者之间的关系还和采用哪种多样性指标和生产力指标有关,用水分生态类型多样性比物种多样性更能反映与地上地下总生产力间的关系,得到放牧影响下内蒙古草原植物群落地上地下总生物量与水分生态类型多样性的回归方程。  相似文献   

7.
为了了解青藏高原东北部不同降水梯度下, 高山林线处的树木径向生长与气候关系是否存在差异, 在青海东北部从西北到东南沿降水梯度设置3个高山林线采样点: 乌兰县哈里哈图国家森林公园(HL, 年降水量217 mm)、都兰县曲什岗(QS, 281 mm)和同德县河北林场(HB, 470 mm), 运用树轮年轮学方法分析林线优势种祁连圆柏(Sabina przewalskii)的径向生长-气候关系随降水梯度的变化规律。结果表明: 不同降水梯度下, 降水对祁连圆柏径向生长的限制作用差异不明显, 但温度对祁连圆柏径向生长的影响存在显著差异。在低降水区域(HL), 冬、夏季最低气温主要限制祁连圆柏径向生长, 并且在不同气候特征年中无明显变化; 在中降水区域(QS), 祁连圆柏的径向生长明显受冬季最低气温影响, 与低降水区域相比, 春、夏季最低气温对祁连圆柏径向生长的限制作用减弱, 并且主要限制因子在不同气候特征年存在显著变化; 在高降水区域(HB), 冬、夏季最低气温对祁连圆柏径向生长的限制作用不显著, 而春、秋季最低气温对祁连圆柏径向生长的抑制作用显著增加, 并且主要集中在高温年和干旱年。该研究结果并未支持干旱(湿润)区高山林线树木径向生长主要由水分(温度)限制的假说, 但是林线处降水量会影响树木生长与温度的关系。随着青藏高原东北部暖湿化加剧, 不同地区林线处树木生长的气候限制因子可能存在复杂化趋势。  相似文献   

8.
为了了解青藏高原东北部不同降水梯度下, 高山林线处的树木径向生长与气候关系是否存在差异, 在青海东北部从西北到东南沿降水梯度设置3个高山林线采样点: 乌兰县哈里哈图国家森林公园(HL, 年降水量217 mm)、都兰县曲什岗(QS, 281 mm)和同德县河北林场(HB, 470 mm), 运用树轮年轮学方法分析林线优势种祁连圆柏(Sabina przewalskii)的径向生长-气候关系随降水梯度的变化规律。结果表明: 不同降水梯度下, 降水对祁连圆柏径向生长的限制作用差异不明显, 但温度对祁连圆柏径向生长的影响存在显著差异。在低降水区域(HL), 冬、夏季最低气温主要限制祁连圆柏径向生长, 并且在不同气候特征年中无明显变化; 在中降水区域(QS), 祁连圆柏的径向生长明显受冬季最低气温影响, 与低降水区域相比, 春、夏季最低气温对祁连圆柏径向生长的限制作用减弱, 并且主要限制因子在不同气候特征年存在显著变化; 在高降水区域(HB), 冬、夏季最低气温对祁连圆柏径向生长的限制作用不显著, 而春、秋季最低气温对祁连圆柏径向生长的抑制作用显著增加, 并且主要集中在高温年和干旱年。该研究结果并未支持干旱(湿润)区高山林线树木径向生长主要由水分(温度)限制的假说, 但是林线处降水量会影响树木生长与温度的关系。随着青藏高原东北部暖湿化加剧, 不同地区林线处树木生长的气候限制因子可能存在复杂化趋势。  相似文献   

9.
气孔是植物与外界环境进行水分和气体交换的主要通道,调节植物碳同化和水分散失的平衡关系,在一定程度上反映植物对外界环境变化的适应。沿太白山北坡1100—2300 m海拔,测定4种栎属树种的气孔性状,分析气孔性状沿海拔的变化规律和其对环境因子的响应。结果表明:(1)气孔密度与气孔长度间的负相关在4个树种间均显著存在(P0.05);除栓皮栎(Quercus variabilis)外,气孔密度与潜在气孔导度指数的正相关关系均达显著水平;而气孔宽度与气孔长度之间只在栓皮栎和锐齿栎(Q. aliena var. acuteserrata)达到显著水平。(2)栓皮栎和槲栎(Q. aliena)的气孔长度和宽度随海拔升高而下降,气孔密度、潜在气孔导度指数增加,辽东栎(Q. wutaishansea)变化形式则相反;锐齿栎气孔宽度减小,其余性状沿海拔呈单峰变化,在约1600 m处气孔长度达到最小值,气孔密度和潜在气孔导度指数达到最大值。(3)与土壤因子相比,气孔性状主要受气候因素的影响。潜在气孔导度指数与大气温度、空气湿度成极显著正相关(P0.01),与降水量显著负相关(P0.05)。其中,空气相对湿度是影响潜在气孔导度指数的主要因素,能够解释气孔变异的22.9%。本研究结果对于深入认识秦岭太白山地区栎属树种对环境变化的响应和适应提供理论证据。  相似文献   

10.
11.
西藏紫花针茅叶功能性状沿降水梯度的变化   总被引:4,自引:0,他引:4       下载免费PDF全文
植物叶功能性状与环境因子的关系是近10年来植物生态学的研究热点。该文以广泛分布于青藏高原干旱、半干旱草地的优势植物种紫花针茅(Stipa purpurea)为研究对象, 沿降水梯度(69-479 mm)系统测定了日土、改则、珠峰、当雄和纳木错5个调查地点紫花针茅比叶面积(SLA)、单位重量和单位面积叶氮含量(Nmass, Narea)、叶密度和厚度等叶功能性状以及土壤全氮含量等因子, 试图验证干旱胁迫地区同一物种内SLA-Nmass关系沿降水梯度的策略位移现象是否具有普遍性, 并对是否出现策略位移现象提出可能的解释。研究结果表明: 1) SLANmass与生长季温度和降水以及土壤全氮含量均没有显著关系, SLANmass的关系在干旱半干旱区(年降水/蒸发比< 0.11)与半湿润区(年降水/蒸发比> 0.11)之间并没有出现典型的位移现象; 2)叶密度是决定半湿润区SLA变化的主导因子, 而叶厚度则是干旱半干旱区SLA变化的控制因子, 两者与SLA均呈负相关, 随着温度增加或降水减少, 叶厚度增加而叶密度降低, 导致SLA随温度和降水变化不明显; 3)半湿润区的叶密度增加引起Narea增加, 而干旱半干旱区的叶厚度增加并没有造成Narea的显著变化, 导致Narea沿降水梯度没有显著变化; 4)紫花针茅地上生物量与Narea具有显著正相关关系, 表明Narea的增加有助于提高植被生产力。结果表明, 在干旱胁迫下, 植物通过增加叶厚度来维持不变的Narea可能有助于保持与较湿润地区相似的光合生产和水分利用效率。叶厚度和叶密度对比叶面积的相对影响在干旱半干旱区与半湿润区之间发生转变, 这为进一步检测高寒草地植被的水分限制阈值提供了新思路。  相似文献   

12.
13.
不同降水条件下两种荒漠植物的水分利用策略   总被引:8,自引:1,他引:8       下载免费PDF全文
自然降水是干旱、半干旱地区荒漠植物重要的水分来源。为了说明自然降水量的变化对干旱、半干旱地区荒漠植物水分利用策略的影响, 研究了两种常见荒漠植物油蒿(Artemisia ordosica)和白刺(Nitraria tangutorum)在3个不同自然降水地区(内蒙古的杭锦旗和磴口县及甘肃的民勤县)的水分来源、水分利用效率及植物的抗逆能力的变化。测定了不同地区的植物茎水、各潜在水源(降水、地下水和土壤水)的δD和δ18O值, 并利用IsoSource模型分析了这两种植物在不同地区对这些潜在水源的选择性利用情况; 同时测定了叶片的δ13C和游离脯氨酸浓度。结果表明: 在年降水量最高的杭锦旗, 这两种植物对浅层土壤水的利用比例最高, 其中油蒿主要利用0-50 cm土层中的水源; 在年降水量相对较低的磴口和民勤, 植物利用的主要水源为深层土壤水和地下水。随着年降水量的增加, 这两种植物的水分利用效率逐渐降低。白刺的脯氨酸浓度大于油蒿, 与水分利用效率无关, 但油蒿的水分利用效率和脯氨酸浓度成正比。研究表明, 荒漠植物能通过改变其水分利用策略和其他生理特性适应自然降水量的变化, 但不同植物种采用的策略可能有所不同。  相似文献   

14.
The intermediate disturbance hypothesis predicts unimodal relationships between species diversity and disturbance frequency/intensity. To test this hypothesis, species diversity in herbaceous plant communities along a human trampling gradient was investigated by conducting a 4-year experiment in an old-field. In general, species richness (S), the Shannon–Weiner index (H) from plant cover data and species evenness (J) showed negative linear relationships with trampling frequency, in contrast to the prediction of the intermediate disturbance hypothesis. However, the significant relationships between trampling frequency and species diversity were not observed in the fourth year without J, which showed a unimodal relationship. In all experimental years, the number of new species that colonized the plots after 1year was small under frequent trampling, and the number of species lost from the plots was large under infrequent trampling. The relative number and the relative cover of perennial species increased as trampling frequency increased in the first and second years, but this pattern was not observed in the following years because the dominance of perennials further increased at decreasing frequencies of trampling. The similarity in the species composition and the yearly changes in species dominance indicated that trampling at higher frequencies eliminated more trampling-intolerant species only in the early years of the experiment. These results suggest that trampling mediated early changes in species diversity patterns, but competitive interactions were more important in the later experimental years. The time lag in the effects of trampling and competition appears to be attributable to the infrequent occurrence of unimodal patterns of species diversity.  相似文献   

15.
Evidence regarding the effect of temperature and rainfall on gall‐inducing insects is contradictory: some studies indicate that species richness of gall‐inducing insects increases as environments become hotter and drier, while others suggest that these factors have no effect. The role of plant species richness in determining species richness of gall‐inducing insects is also controversial. These apparent inconsistencies may prove to be due to the influence of soil fertility and the uneven distribution of gall‐inducing insect species among plant taxa. The current study tested hypotheses about determinants of gall‐inducing insect species richness in a way different to previous studies. The number of gall‐inducing insect species, and the proportion of species with completely enclosed galls (more likely to give protection against heat stress and desiccation), were measured in replicate plots at five locations along a 500‐km N‐S transect in the seasonal tropics of the Northern Territory, Australia. There is a strong temperature–rainfall gradient along this transect during the wet season. Plant species lists had already been compiled for each collection plot. All plots were at low elevation in eucalypt savannah growing on infertile soils. There was no evidence to suggest that hot, dry environments in Australia have more gall‐inducing insect species than cooler, wetter environments, or that degree of enclosure of galls is related to protecting insects from heat stress and desiccation. The variable number of gall‐inducing insect species on galled plant species meant that plant species richness did not influence gall species richness. Confirmation is still required that low soil fertility does not mask temperature–rainfall effects and that galls in the study region are occupied predominantly in the wet season, when the temperature–rainfall gradient is most marked.  相似文献   

16.
We present a study of soil organic carbon (SOC) inventories and δ13C values for 625 soil cores collected from well‐drained, coarse‐textured soils in eight areas along a 1000 km moisture gradient from Southern Botswana, north into southern Zambia. The spatial distribution of trees and grass in the desert, savannah and woodland ecosystems along the transect control large systematic local variations in both SOC inventories and δ13C values. A stratified sampling approach was used to smooth this variability and obtain robust weighted‐mean estimates for both parameters. Weighted SOC inventories in the 0–5 cm interval of the soils range from 7 mg cm?2 in the driest area (mean annual precipitation, MAP=225 mm) to 41±12 mg cm?2 in the wettest area (MAP=910 mm). For the 0–30 cm interval, the inventories are 37.8 mg cm?2 for the driest region and 157±33 mg cm?2 for the wettest region. SOC inventories at intermediate sites increase as MAP increases to approximately 400–500 mm, but remain approximately constant thereafter. This plateau may be the result of feedbacks between MAP, fuel load and fire frequency. Weighted δ 13C values decrease linearly in both the 0–5 and 0–30 cm depth intervals as MAP increases. A value of –17.5±1.0‰ characterizes the driest areas, while a value of ?25±0.7‰ characterizes the wettest area. The decrease in δ 13C value with increasing MAP reflects an increasing dominance of C3 vegetation as MAP increases. SOC in the deeper soil (5–30 cm depth) is, on average, 0.4±0.3‰ enriched in 13C relative to SOC in the 0–5 cm interval.  相似文献   

17.
Abstract. We develop and evaluate a large‐scale dynamic vegetation model, TEM‐LPJ, which considers interactions among water, light and nitrogen in simulating ecosystem function and structure. We parameterized the model for three plant functional types (PFTs): a temperate deciduous forest, a temperate coniferous forest, and a temperate C3 grassland. Model parameters were determined using data from forest stands at the Harvard Forest in Massachusetts. Applications of the model reasonably simulated stand development over 120 yr for Populus tremuloides in Wisconsin and for Pinus elliottii in Florida. Our evaluation of tree‐grass interactions simulated by the model indicated that competition for light led to dominance by the deciduous forest PFT in moist regions of eastern United States and that water competition led to dominance by the grass PFT in dry regions of the central United States. Along a moisture transect at 41.5° N in the eastern United States, simulations by TEM‐LPJ reproduced the composition of potential temperate deciduous forest, temperate savanna, and C3 grassland located along the transect.  相似文献   

18.
Cephalocereus columna-trajani is a giant columnar cactus endemic of the Tehuacán-Cuicatlán Valley in Central Mexico. Stem tilting and northward pseudocephalium azimuth in C.␣columna-trajani have functional advantages in terms of interception of direct solar radiation at the northernmost portions of its range. Since the success of both characters strongly depends on the apparent position of the sun during the growing season, in this paper we test the hypothesis that the occurrence of such columnar morphology is restricted geographically and imposes mechanical restrictions that limit column height. Following a latitudinal gradient along the Tehuacán-Cuicatlán Valley, we selected five populations, recorded tilting angle and pseudocephalium azimuth, and carried out allometric and biomechanical analyses of height–diameter relationships. Northern populations showed higher tilting angles. Pseudocephalium azimuth significantly differed among populations, and pseudocephalium orientation was consistently North-Northwestern. Stem allometry showed that the stems of the southern populations increased in height at a far greater rate with respect to diameter than the northern populations. The southernmost population showed the lowest safety factor. These results support the hypothesis that stem tilting in C.␣columna-trajani is functionally advantageous in a restricted geographical range, and imposes mechanical restrictions to column height.  相似文献   

19.
Questions: Does grazing have the same effect on plant species richness at different spatial scales? Does the effect of spatial scale vary under different climatic conditions and vegetation types? Does the slope of the species‐area curve change with grazing intensity similarly under different climatic conditions and vegetation types? Location: Pastures along a climatic gradient in northeastern Spain. Methods: In zones under different regimes of sheep grazing (high‐, low‐pressure, abandonment), plant species richness was measured in different plot sizes (from 0.01 to 100 m2) and the slope of the species‐area curves was calculated. The study was replicated in five different locations along a climatic gradient from lowland semi‐arid rangelands to upland moist grasslands. Results: Species richness tended to increase with grazing intensity at all spatial scales in the moist upland locations. On the contrary, in the most arid locations, richness tended to decrease, or remain unchanged, with grazing due to increased bare soil. Grazing differentially affected the slope (z) of the species‐area curve (power function S=c Az) in different climatic conditions: z tended to increase with grazing in arid areas and decrease in moist‐upland ones. ß‐diversity followed similar pattern as z. Conclusions: Results confirm that the impact of grazing on plant species richness are spatial‐scale dependent. However, the effects on the species‐area relationship vary under different climatic conditions. This offers a novel insight on the patterns behind the different effects of grazing on diversity in moist vs. arid conditions reported in the literature. It is argued that the effect of spatial scale varies because of the different interaction between grazing and the intrinsic spatial structure of the vegetation. Variations in species‐area curves with grazing along moisture gradients suggest also a different balance of spatial components of diversity (i.e. a‐ and ß‐diversity).  相似文献   

20.
Termites are important decomposers and ‘ecosystem engineers’ in tropical ecosystems. Furthermore, termite assemblages are sensitive to human land‐use intensification and often termite density and the importance of soil‐feeding termites decrease with land‐use intensification. These changes in termite assemblages may also lead to a decrease in termite‐mediated ecosystem processes (e.g. soil formation, cellulose decomposition). We compared density and functional composition of termites with cellulose removal from undisturbed primary forests to farmlands (Kakamega Forest, Western Kenya). In contrast to the expectation, we found no response of termite abundance along the gradient of land‐use intensification. However, as expected, the relative abundance of soil‐feeders decreased from primary forests to farmlands. In contrast, frequency of attack on tissue paper baits and removal of tissue showed a clear hump‐shaped relationship to land‐use intensification with high values in secondary forests. These nonconcordant patterns of density and functional composition of termite assemblages with cellulose removal by termites suggest that it may be misleading to infer changes in a process by the characteristics of the assemblage of organisms that mediate that process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号