首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Calcineurin is a serine/threonine protein phosphatase that plays a critical role in many physiologic processes such as T-cell activation, skeletal myocyte differentiation, and cardiac hypertrophy. We previously showed that active MEKK3 is capable of stimulating calcineurin/nuclear factor of activated T-cells (NFAT) signaling in cardiac myocytes through phosphorylation of modulatory calcineurin-interacting protein 1 (MCIP1). However, the protein kinases that function downstream of MEKK3 to mediate MCIP1 phosphorylation and the mechanism of MCIP1-mediated calcineurin regulation have not been defined. Here, we show that MEK5 and big MAP kinase 1 (BMK1) function downstream of MEKK3 in a signaling cascade that induces calcineurin activity through phosphorylation of MCIP1. Genetic studies showed that BMK1-deficient mouse lung fibroblasts failed to mediate MCIP1 phosphorylation and activate calcineurin/NFAT in response to angiotensin II, a potent NFAT activator. Conversely, restoring BMK1 to the deficient cells restored angiotensin II-mediated calcineurin/NFAT activation. Thus, using BMK1-deficient mouse lung fibroblast cells, we provided the genetic evidence that BMK1 is required for angiotensin II-mediated calcineurin/NFAT activation through MICP1 phosphorylation. Finally, we discovered that phosphorylated MCIP1 dissociates from calcineurin and binds with 14-3-3, thereby relieving its inhibitory effect on calcineurin activity. In summary, our findings reveal a previously unrecognized essential regulatory role of mitogen-activated protein kinase signaling in calcineurin activation through the reversible phosphorylation of a calcineurin-interacting protein, MCIP1.  相似文献   

3.
Here we describe a small family of proteins, termed MCIP1 and MCIP2 (for myocyte-enriched calcineurin interacting protein), that are expressed most abundantly in striated muscles and that form a physical complex with calcineurin A. MCIP1 is encoded by DSCR1, a gene located in the Down syndrome critical region. Expression of the MCIP family of proteins is up-regulated during muscle differentiation, and their forced overexpression inhibits calcineurin signaling to a muscle-specific target gene in a myocyte cell background. Binding of MCIP1 to calcineurin A requires sequence motifs that resemble calcineurin interacting domains found in NFAT proteins. The inhibitory action of MCIP1 involves a direct association with the catalytic domain of calcineurin, rather than interference with the function of downstream components of the calcineurin signaling pathway. The interaction between MCIP proteins and calcineurin may modulate calcineurin-dependent pathways that control hypertrophic growth and selective programs of gene expression in striated muscles.  相似文献   

4.
The calcineurin A (CaNA) subunit was identified as a novel binding partner of plasma membrane Na(+)/H(+) exchanger 1 (NHE1). CaN is a Ca(2+)-dependent phosphatase involved in many cellular functions, including cardiac hypertrophy. Direct binding of CaN to the (715)PVITID(720) sequence of NHE1, which resembles the consensus CaN-binding motif (PXIXIT), was observed. Overexpression of NHE1 promoted serum-induced CaN/nuclear factor of activated T cells (NFAT) signaling in fibroblasts, as indicated by enhancement of NFAT promoter activity and nuclear translocation, which was attenuated by NHE1 inhibitor. In neonatal rat cardiomyocytes, NHE1 stimulated hypertrophic gene expression and the NFAT pathway, which were inhibited by a CaN inhibitor, FK506. Importantly, CaN activity was strongly enhanced with increasing pH, so NHE1 may promote CaN/NFAT signaling via increased intracellular pH. Indeed, Na(+)/H(+) exchange activity was required for NHE1-dependent NFAT signaling. Moreover, interaction of CaN with NHE1 and clustering of NHE1 to lipid rafts were also required for this response. Based on these results, we propose that NHE1 activity may generate a localized membrane microdomain with higher pH, thereby sensitizing CaN to activation and promoting NFAT signaling. In cardiomyocytes, such signaling can be a pathway of NHE1-dependent hypertrophy.  相似文献   

5.
心肌肥大是心肌细胞面对多种病理刺激时的共同反应,以心肌细胞体积增大和胚胎期基因的重新表达为标志.心肌发育调控基因肌肉LIM蛋白(muscle LIM protein,MLP)的表达异常与心肌肥大有关.为研究MLP参与心肌肥大发生的分子机制,采用去氧肾上腺素(phenylephrine, PE)刺激大鼠原代培养心肌细胞,建立心肌细胞肥大模型,采用RNAi技术敲减MLP的表达,分析MLP与肥大信号通路钙调神经磷酸酶(calcineurin)/活化T细胞核因子(nuclear factor of activated T-cells, NFAT)的关系.结果显示, 原代培养的心肌细胞经一定浓度的PE刺激后细胞表面积增加,肥大标志蛋白ANP、BNP表达增高,并伴有MLP表达上调. RNAi方法敲减MLP的表达则明显抑制PE诱导的心肌细胞表面积增加和BNP表达增高,并且直接 影响NFAT的转录激活活性,提示MLP与心肌肥大的发生密切相关,并且可能是通过calcineurin/NFAT信号通路而参与心肌肥大的发生.  相似文献   

6.
Calcineurin, a calcium-regulated protein phosphatase, activates gene expression specific to slow muscle fibers by dephosphorylating a family of the nuclear factor of activated T cells (NFAT), which cooperates with myocyte enhancer factor-2 (MEF2) and AP-1. However, it remains unknown how acute exercise influences this signaling pathway and leads to the development of slow muscle fibers. In the present study, we investigated the effect of moderate acute exercise on mRNA expression of genes in the calcineurin signaling pathway in human skeletal muscle. Five healthy volunteers underwent 1 h bicycle ergometer at 50%VO2max, and vastus lateralis muscle biopsies were collected before and after exercise. Four hours after exercise, alterations in mRNA expression of NFAT 1-3 were observed with a wide variety among subjects, while c-fos mRNA was significantly induced in all subjects. By contrast, the expression of calcineurin, MEF2, and myocyte-enriched calcineurin-interacting protein 1 (MCIP1) remained unchanged. These results suggest that even moderate acute exercise may change mRNA expression of genes in the calcineurin-signaling pathway.  相似文献   

7.
We have investigated whether VEGF (vascular endothelial growth factor) regulates the proliferative capacity and eNOS (endothelial nitric oxide synthase)/NO (nitric oxide) pathway of EPCs (endothelial progenitor cells) by activating CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) signalling. EPCs were obtained from cultured mononuclear cells isolated from the peripheral blood of healthy adults. Treatment with VEGF (50 ng/ml) potently promoted CaN enzymatic activity, activation of NFAT2, cell proliferation, eNOS protein expression and NO production. Pretreatment with cyclosporin A (10 μg/ml), a pharmacological inhibitor of CaN or 11R-VIVIT, a special inhibitor of NFAT, completely abrogated the aforementioned effects of VEGF treatment and increased apoptosis. The results indicate that VEGF treatment promotes the proliferative capacity of human EPCs by activating CaN/NFAT signalling leading to increased eNOS protein expression and NO production.  相似文献   

8.
9.
The aims of present study were to investigate the effect of phthalate (2-ethylhexyl) ester (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) on Th1/Th2 balance signaling for interleukin 4 (IL-4) expression in splenic lymphocytes, and contribution of MEHP to any hypothesized changes in vitro. Primary splenic lymphocytes were exposed to DEHP/MEHP. ELISA and Western blotting were used to detect proteins. Confocal-microscopy was used to examine nuclear translocation. Nuclear factor of activated T cells (NFAT) DNA binding activity was examined by electrophoretic mobility-shift assay. DEHP significantly increased IL-4 and interferon gamma (IFN-γ) level, and reduced Th1/Th2 ratio (reflected by IFN-γ/IL-4) with 5 μg/L Concanavalin A (ConA) treatment. While MEHP reduced Th1/Th2 ratio (represented by IFN-γ/IL-6). IL-4 mRNA was significantly increased by DEHP but not by MEHP after PMA and Ion treatment. DEHP significantly inhibited NFATp protein in cytosol and nucleus. DEHP augmented nuclear translocation of NFATc in transfected EL4 cells and NFAT DNA-binding activity. DEHP-mediated enhancement of calcium-dependent phosphatase calcineurin (CaN) protein, and NFAT and IL-4 expression were abrogated by calcium antagonist verapamil and CaN inhibitor tarcolimus. Ca2+/calmodulin antagonist chlorpromazine significantly suppressed IL-4 and CaN production with no NFAT mRNA change. Our study suggests that DEHP and MEHP impact Th1/Th2 balance by modulating different cytokines. DEHP-affected IL-4 expression through Ca/CaN/NFAT signaling pathway, but no effect was discovered for MEHP.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Fox DS  Heitman J 《Eukaryotic cell》2005,4(9):1526-1538
Mating and virulence of the human fungal pathogen Cryptococcus neoformans are controlled by calcineurin, a serine-threonine-specific calcium-activated phosphatase that is the target of the immunosuppressive drugs cyclosporine A and FK506. In previous studies, a calcineurin binding protein (Cbp1, Rcn1, Dscr1/Csp1-3/MCIP1-3) that is conserved from yeasts to humans has been identified, but whether this protein functions to regulate calcineurin activity or facilitate calcineurin function as a signaling effector has been unclear. Here we show that, like calcineurin, Cbp1 is required for mating in C. neoformans. By contrast, Cbp1 plays no role in promoting calcineurin-dependent growth at 37 degrees C and is not essential for haploid fruiting. Site-directed mutagenesis studies provide evidence that tandem phosphorylation and dephosphorylation of two serine residues in the conserved SP repeat motif are critical for Cbp1 function. Epistasis analysis supports models in which Cbp1 functions coordinately with calcineurin to direct hyphal elongation during mating. Taken together, these findings provide insights into the roles of Cbp1 as an accessory subunit or effector of calcineurin-specific signaling pathways, which may be features conserved among the calcipressins to govern calcineurin signaling in immune cells, cardiomyocytes, and neurons of multicellular eukaryotes.  相似文献   

17.
18.
针对NFAT信号途径的新型免疫抑制剂   总被引:1,自引:0,他引:1  
免疫抑制剂cyclosporin A和FK-506通过抑制依赖钙调蛋白的磷酸酶calcineurin(CaN)的活性,阻断了活化T细胞核因子(NFAT)的活化,最终抑制了机体的免疫应答.然而,这种直接对CaN酶活性的破坏,使得这类药物具有严重的临床毒副作用.随着对NFAT调节机制的研究深入,近年来,人们运用各种试验方法、手段筛选了一些天然的以及合成的抑制剂,它们针对NFAT信号通路的下游靶点发挥作用,从而选择性更强,毒性更小,为临床抗移植排斥反应、自身免疫性疾病的治疗奠定了基础.本文综述了这方面的进展,并就这些抑制剂的特点进行了简单的分析,另提出了一些新的有治疗潜力的靶点.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号