首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The products of the NpR1527 and NpR1526 genes of the filamentous, diazotrophic, fresh-water cyanobacterium Nostoc punctiforme strain ATCC 29133 were identified as a nitrate transporter (NRT) and nitrate reductase (NR) respectively, by complementation of nitrate assimilation mutants of the cyanobacterium Synechococcus elongatus strain PCC 7942. While other fresh-water cyanobacteria, including S. elongatus, have an ATP-binding cassette (ABC)-type NRT, the NRT of N. punctiforme belongs to the major facilitator superfamily, being orthologous to the one found in marine cyanobacteria (NrtP). Unlike the ABC-type NRT, which transports both nitrate and nitrite with high affinity, Nostoc NrtP transported nitrate preferentially over nitrite. NrtP was distinct from ABC-type NRT also in its insensitivity to ammonium-promoted regulation at the post-translational level. The nitrate reductase of N. punctiforme was, on the other hand, inhibited upon addition of ammonium to medium, lending ammonium sensitivity to nitrate assimilation.  相似文献   

3.
NtcB of the cyanobacterium Synechococcus elongatus strain PCC 7942 is a LysR family protein that enhances expression of the nitrate assimilation operon (nirA operon) in response to the presence of nitrite, an intermediate of assimilatory nitrate reduction. Inactivation of ntcB in this cyanobacterium specifically abolishes the nitrite responsiveness of nirA operon expression, but under nitrate-replete conditions (wherein negative feedback by intracellularly generated ammonium prevails over the positive effect of nitrite) activity levels of the nitrate assimilation enzymes are marginally higher in the wild-type cells than in the mutant cells, raising the issue of whether the nitrite-promoted regulation has physiological importance. On the other hand, the strains carrying ntcB expressed much higher nitrate assimilation enzyme activities under nitrate-limited growth conditions than under nitrate-replete conditions whereas the ntcB-deficient strains showed levels of the enzyme activities lower than those seen under the nitrate-replete conditions. Although the ntcB mutant maintained a constant cell population in a nitrate-limited chemostat when grown as a single culture, it was diluted at a rate expected for nondividing cells when mixed with the wild-type cells and subjected to nitrate limitation in the chemostat culture system. These results demonstrated that the nitrite-promoted activation of the nitrate assimilation operon is essential for up-regulation of the nitrate assimilation activities under the conditions of nitrate limitation and for competitive utilization of nitrate.  相似文献   

4.
The photosynthetic nature of the initial stages of nitrate assimilation, namely, uptake and reduction of nitrate, has been investigated in cells of the cyanobacterium Anacystis nidulans treated with l-methionine dl-sulfoximine to prevent further assimilation of the ammonium resulting from nitrate reduction. The light-driven utilization of nitrate or nitrite by these cells results in ammonium release and is associated with concomitant oxygen evolution. Stoichiometry values of about 2 mol oxygen evolved per mol nitrate reduced to ammonium and 1.5 mol oxygen per mol nitrite have been determined in the presence of CO2, as well as in its absence, with nitrate or nitrite as the only Hill reagent. This indicates that in A. nidulans water photolysis directly provides, without the need for carbon metabolites, the reducing power required for the in vivo reduction of nitrate and nitrite to ammonium, processes which are besides strongly inhibited when the operation of the photosynthetic noncyclic electron flow is blocked. Evidence indicating the participation of concentrative transport system(s) in the uptake of nitrate and nitrite by A. nidulans is also presented. The operation of these energy-requiring systems seems to account for the sensitivity to ATP-synthesis inhibitors exhibited by nitrate and nitrite utilization in l-methionine dl-sulfoximine-treated cells. The utilization of nitrate by A. nidulans cells, concomitant with oxygen evolution, can therefore be considered as a genuinely CO2-independent photosynthetic process that makes direct use of photosynthetically generated assimilatory power.  相似文献   

5.
The impact of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was studied on growth, Hill reaction, nitrate uptake, enzymes of nitrate utilization, and of oxidative pentose pathway by phototrophically growingPhormidium uncinatum and its DCMU-resistant (DCMUR) mutant. The growth-inhibitory action of DCMU was apparently the consequence of an inactivation of photosystem II (PS II) reaction and of reduction of nitrate utilization owing to an inhibition of nitrite reductase (NiR) activity. Mutation to this herbicide rendered both the processes insensitive to DCMU. Nevertheless, nitrate transport, nitrate reduction to nitrite, and ammonia assimilation of both the strains remained rather unaffected by DCMU. Photosynthetically inactive cells of the two strains exhibited higher activity levels of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) than their phototrophic cultures.These data suggest that photosynthesis regulates nitrate utilization in this cyanobacterium at nitrite reduction level and that nitrate uptake and reduction to nitrite are relaxed from this control and conditionally sustained by oxidative breakdown of reserve glycogen.  相似文献   

6.
7.
The products of the NpR1527 and NpR1526 genes of the filamentous, diazotrophic, fresh-water cyanobacterium Nostoc punctiforme strain ATCC 29133 were identified as a nitrate transporter (NRT) and nitrate reductase (NR) respectively, by complementation of nitrate assimilation mutants of the cyanobacterium Synechococcus elongatus strain PCC 7942. While other fresh-water cyanobacteria, including S. elongatus, have an ATP-binding cassette (ABC)-type NRT, the NRT of N. punctiforme belongs to the major facilitator superfamily, being orthologous to the one found in marine cyanobacteria (NrtP). Unlike the ABC-type NRT, which transports both nitrate and nitrite with high affinity, Nostoc NrtP transported nitrate preferentially over nitrite. NrtP was distinct from ABC-type NRT also in its insensitivity to ammonium-promoted regulation at the post-translational level. The nitrate reductase of N. punctiforme was, on the other hand, inhibited upon addition of ammonium to medium, lending ammonium sensitivity to nitrate assimilation.  相似文献   

8.
9.
Nostoc ANTH is a filamentous, heterocystous cyanobacterium capable of N2-fixation in the absence of combined nitrogen. A chlorate-resistant mutant (Clo-R) of Nostoc ANTH was isolated that differentiates heterocysts and fixes N2 in the presence of nitrate, but not in the presence of nitrite or ammonium. The mutant lacks nitrate uptake and thereby also lacks induction of nitrate reductase activity by nitrate. However, this mutant is able to transport and assimilate nitrite, indicating that there is a transport system for nitrite that is distinct from that for the nitrate. The lack of inhibitory effect of nitrate on N2-fixation was owing to lack of nitrate uptake and not to lack of enzymes for its assimilation (nitrate reductase and glutamine synthetase) or the lack of an ammonium transport system for retention of ammonia. The mutant has potential for use as a biofertilizer supplementing chemical nitrate fertilizer in rice fields, without N2-fixation being adversely affected. Received: 16 October 2001 / Accepted: 26 November 2001  相似文献   

10.
The active nitrate transport system of the cyanobacterium Synechococcussp. PCC7942 is encoded by the four genes nrtA, nrtB, nrtC andnrtD. It is essential for the growth of the cyanobacterium atphysiological concentrations of nitrate and has been shown tobe involved in the active transport of nitrite as well. Thededuced amino acid sequences of the NrtB, NrtC and NrtD proteinsindicate that the transporter is a member of the ABC (ATP-bindingcassette) superfamily of active transporters. Among the prokaryoticABC transporters, the cyanobacterial nitrate/nitrite transporteris unique in having a membrane-bound protein NrtA and an NrtA-likeextra domain linked to one of the ATP-binding subunits (C-terminaldomain of NrtC). Molecular biological, biochemical and physiologicalstudies suggest that NrtA is the substrate-binding protein requiredfor the transport of nitrate/nitrite and that the C-terminaldomain of NrtC has a regulatory role. Comparison of the structuresof nitrate transporters from eukaryotic and prokaryotic, photosyntheticand non-photosynthetic organisms indicate that the nrt nitrate/nitritetransporter represents a prokaryotic nitrate transporter distinctfrom the nitrate transporters of eukaryotes. 1Recipient of the JSPP Young Investigator Award, 1994.  相似文献   

11.
12.
Most cyanobacteria take up nitrate or nitrite through a multisubunit ABC transporter (ATP-binding cassette) located in the cytoplasmic membrane. Nitrate and nitrite transport activity is instantaneously blocked by the presence of ammonium in the medium. Previous biochemical studies reported the existence of phosphorylation/dephosphorylation events of the nitrate transporter (NRT) related to the presence of ammonium-sensitive kinase/phosphatase activities in plasma membranes of the cyanobacterium Synechococcus elongatus PCC 6301. In this work, we have analyzed the biochemical properties of the periplasmic nitrate/nitrite-binding subunit (NrtA) of NRT from the thermophilic nondiazotrophic cyanobacterium Phormidium laminosum. Our results show that cyanobacterial NrtA is phosphorylated in vivo. However, substrate binding activity in vitro is not affected by the phosphorylation state of the protein, ruling out the possibility that phosphorylation/dephosphorylation of NrtA is involved in the regulation of the nitrate/nitrite uptake by NRT transporter. Moreover, NrtA is present as multiple isoforms showing the same molecular mass but different isoelectric points ranging from pI 5 to 6. Mass spectrometric characterization of NrtA isoforms shows that the protein is phosphorylated at residue Tyr203, and contains several methionine sulphoxide residues which account for the observed isoforms. Both phosphorylated and non-phosphorylated forms of NrtA are active in vitro, showing comparable binding affinity for nitrate and nitrite. Both substrates behave as pure competitive inhibitors with a binding stoichiometry of one molecule of anion per NrtA monomer.  相似文献   

13.
Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite reductase was also insensitive to ammonium. The inhibition of nitrate and nitrite transport required the PII protein (glnB gene product) and the C-terminal domain of NrtC, one of the two ATP-binding subunits of the transporter, as in the Synechococcus strain. Mutants expressing the PII derivatives in which Ala or Glu is substituted for the conserved Ser49, which has been shown to be the phosphorylation site in the Synechococcus strain, showed ammonium-promoted inhibition of nitrate uptake like that of the wild-type strain. The S49A and S49E substitutions in GlnB did not affect the regulation of the nitrate and nitrite transporter in Synechococcus either. These results indicated that the presence or absence of negative electric charge at the 49th position does not affect the activity of the PII protein to regulate the cyanobacterial ABC-type nitrate and nitrite transporter according to the cellular nitrogen status. This finding suggested that the permanent inhibition of nitrate assimilation by an S49A derivative of PII, as was previously reported for Synechococcus elongatus strain PCC 7942, is likely to have resulted from inhibition of nitrate reductase rather than the nitrate and nitrite transporter.  相似文献   

14.
Anacystis nidulans, a non-nitrogen-fixing cyanobacterium, can fulfill its nitrogen requirement by the assimilation of nitrate. The first step in the pathway, the reduction of nitrate to nitrite, is catalyzed by the molybdo-protein nitrate reductase. In this study, newly developed techniques for gene cloning in A. nidulans R2 were used for the isolation of two genes involved in nitrate reduction. One gene was cloned by complementation of the corresponding mutant; the other gene was picked up from a cosmid gene library by using a restriction fragment containing the transposon-inactivated gene as a probe. Both genes were unlinked single-copy chromosomal genes. Transformation studies provided evidence for the existence of a third locus involved in nitrate reduction.  相似文献   

15.
Summary Eighteen mutant strains of the unicellular cyanobacterium Anacystis nidulans R2 that are unable to assimilate nitrate have been isolated after transposon Tn901 mutagenesis. Characterization of phenotypes and transformation tests have allowed the distinction of five different mutant types. The mutants exhibiting a nitrate reductase-less phenotype were identified as being affected in previously defined loci, as they could be transformed to the wild type by one of the plasmids pNR12, pNR63 or pNR193, which contain cloned genes of A. nidulans R2 involved in nitrate reduction. The mutations in strains FM2 and FM16 appear to affect two other genes involved in nitrate assimilation. Strain FM2 apparently bears a single mutation which results in both lack of nitrite reductase activity and loss of ammonium-promoted repression of nitrate reductase synthesis. FM16 has a low but significant level of nitrate reductase that is also freed from repression by ammonium, and an increased level of nitrite reductase activity. FM16 exhibited properties which indicate that this mutant strain might also be affected in the transport of nitrate into the cell.Abbreviations EDTA ethylenediamine-tetraacetic acid - MTA mixed alkyltrimethylammonium bromide - TES N-tris (hydroxymethyl)methyl-2-aminoethane sulfonic acid - Tricine N-[2-hydroxy-1,1-bis (hydroxymethyl)ethyl]-glycine - Tris Tris(hydroxymethyl)aminomethane  相似文献   

16.
Most cyanobacteria take up nitrate or nitrite through a multisubunit ABC transporter (ATP-binding cassette) located in the cytoplasmic membrane. Nitrate and nitrite transport activity is instantaneously blocked by the presence of ammonium in the medium. Previous biochemical studies reported the existence of phosphorylation/dephosphorylation events of the nitrate transporter (NRT) related to the presence of ammonium-sensitive kinase/phosphatase activities in plasma membranes of the cyanobacterium Synechococcus elongatus PCC 6301. In this work, we have analyzed the biochemical properties of the periplasmic nitrate/nitrite-binding subunit (NrtA) of NRT from the thermophilic nondiazotrophic cyanobacterium Phormidium laminosum. Our results show that cyanobacterial NrtA is phosphorylated in vivo. However, substrate binding activity in vitro is not affected by the phosphorylation state of the protein, ruling out the possibility that phosphorylation/dephosphorylation of NrtA is involved in the regulation of the nitrate/nitrite uptake by NRT transporter. Moreover, NrtA is present as multiple isoforms showing the same molecular mass but different isoelectric points ranging from pI 5 to 6. Mass spectrometric characterization of NrtA isoforms shows that the protein is phosphorylated at residue Tyr203, and contains several methionine sulphoxide residues which account for the observed isoforms. Both phosphorylated and non-phosphorylated forms of NrtA are active in vitro, showing comparable binding affinity for nitrate and nitrite. Both substrates behave as pure competitive inhibitors with a binding stoichiometry of one molecule of anion per NrtA monomer.  相似文献   

17.
在有PCR和PCO环活性抑制剂甘油醛和光合磷酸化解偶联剂NH4CL存在下,比较了生长于 3种 光环境的乔木黧蒴和灌木九节幼苗阳生和阴生叶片叶绿体的O2和NO2光还原速率。全自然光下两种 植物阳生叶片的叶绿体O2的光还原速率最高,占总光合电子传递活性的66%-68%,NO2光还原速率 也有类似趋势占总电子传递的11%-15%左右。36%和16%自然光下阴生叶片O2和NO2光还原 速率及O2光还原电子传递的比例显著降低,但NO2光还原电子传递的比例不受影响。与NO2光还原 相关的叶片NiR和NR活性及NiR/NR活性比也因叶片接受光强度大小而异,随光强减弱,黧蒴的 NiR活性降低,九节的NR活性增高,但黧蒴的NR活性和九节的NiR活性变化未达差异显著性。  相似文献   

18.
Summary The dark and light reduction of nitrate and nitrite by cell-free preparations of the blue-green algaAnacystis nidulans has been investigated. The three following methods have been successfully applied to the preparation of active particulate fractions from the alga cells: (a) shaking with glass beads, (b) lysozyme treatment and lysis of the resulting protoplasts, and (c) sonication. The two enzymes of the nitrate-reducing system-namely, nitrate reductase and nitrite reductase-are firmly bound to the isolated pigment-containing particles, and can be easily solubilized by prolonging the vibration or sonication time.Both enzymes-whether solubilized or bound to the particles-depend on reduced ferredoxin as the immediate electron donor. In its presence, the alga particles catalyze the gradual photoreduction of nitrate to nitrite and ammonia, a process that can thus be considered as one of the most simple and relevant examples of Photosynthesis. Some of the properties of nitrate reductase have been studied. Nitrate reductase as well as nitrite reductase are adaptive enzymes repressed by ammonia.An invited article.  相似文献   

19.
Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world.  相似文献   

20.
Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号