首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA mismatch repair (MMR) is an important pathway which helps to maintain genomic stability. Mutations in DNA MMR genes are found to promote cancer initiation and foster tumor progression. Deficiency or inactivation of MMR results in microsatellite instability (MSI) which triggers neoantigen generation and impairs tumor growth. Immunotherapies targeting MMR can increase the burden of neoantigens in tumor cells. While MSI has been regarded as an important predictor of sensitivity and drug resistance for immunotherapy-based strategies. Different approaches targeting genomic instability have been demonstrated to be promising in malignancies derived from different tissues. Underlying MMR deficiency-associated immunogenicity is important for improving the therapeutic efficacy of immunotherapies. In this review we provide an overview of the MMR systems, their role in tumorigenesis, drug resistance, prognostic significance and potential targets for therapeutic treatment in human cancers, especially in hematological malignancies.  相似文献   

2.
Wang Y  Xue WC  Liu VW  Ngan HY 《Mitochondrion》2007,7(1-2):171-175
Somatic mitochondrial DNA (mtDNA) alterations including point mutations and microsatellite instability (MSI) have been frequently detected in human cancers. To further explore the extensiveness of mtDNA alterations, we have analyzed the occurrence of somatic mtDNA mutations in different populations of endometrial cancer cells from the same tumor tissues as compared with adjacent non-tumor cells. Laser-captured micro-dissection was used to harvest endometrial cancer cells from separated areas of the same tumor and adjacent normal cells. Total DNA isolated from micro-dissected cells was PCR amplified and analyzed for mtDNA alterations by polyacrylamide gel electrophoresis and DNA sequencing. Multiple mtDNA alterations were detected in different portions of the same tumor. Different populations of endometrial cancer cells carried different patterns of mtDNA mutations. Interestingly, unlike previous reports, most mutations were found to be heteroplasmic. We have demonstrated the occurrence of hyper-variability of mtDNA alterations in a single piece of tumor tissue. Our observations support the hypothesis that the accumulation of mtDNA alterations is random and expands independently. The data presented here showed the heterogeneity of cancer cells in terms of mtDNA alterations in endometrial cancer.  相似文献   

3.
Maintenance of the mitochondrial genome (mtDNA) is essential for proper cellular function. The accumulation of damage and mutations in the mtDNA leads to diseases, cancer, and aging. Mammalian mitochondria have proficient base excision repair, but the existence of other DNA repair pathways is still unclear. Deficiencies in DNA mismatch repair (MMR), which corrects base mismatches and small loops, are associated with DNA microsatellite instability, accumulation of mutations, and cancer. MMR proteins have been identified in yeast and coral mitochondria; however, MMR proteins and function have not yet been detected in human mitochondria. Here we show that human mitochondria have a robust mismatch-repair activity, which is distinct from nuclear MMR. Key nuclear MMR factors were not detected in mitochondria, and similar mismatch-binding activity was observed in mitochondrial extracts from cells lacking MSH2, suggesting distinctive pathways for nuclear and mitochondrial MMR. We identified the repair factor YB-1 as a key candidate for a mitochondrial mismatch-binding protein. This protein localizes to mitochondria in human cells, and contributes significantly to the mismatch-binding and mismatch-repair activity detected in HeLa mitochondrial extracts, which are significantly decreased when the intracellular levels of YB-1 are diminished. Moreover, YB-1 depletion in cells increases mitochondrial DNA mutagenesis. Our results show that human mitochondria contain a functional MMR repair pathway in which YB-1 participates, likely in the mismatch-binding and recognition steps.  相似文献   

4.
The DNA mismatch repair (MMR) proteins are essential for the maintenance of genomic stability of human cells. Compared with hereditary or even sporadic carcinomas, MMR gene mutations are very uncommon in leukemia. However, genetic instability, attested by either loss of heterozygosity or microsatellite instability, has been extensively documented in chronic or acute malignant myeloid disorders. This observation suggests that in leukemia some internal or external signals may interfere with MMR protein expression and/or function. We investigated the effects of protein kinase C (PKC) stimulation by 12-O-tetradecanoylphorbol-13-acetate (TPA) on MMR protein expression and activity in human myeloid leukemia cell lines. First, we show here that unstimulated U937 cells displayed low level of PKC activity as well as MMR protein expression and activity compared with a panel of myeloid cell lines. Second, treatment of U937 cells with TPA significantly increased (3-5-fold) hMSH2 expression and, to a lesser extent, hMSH6 and hPMS2 expression, correlated to a restoration of MMR function. In addition, diacylglycerol, a physiological PKC agonist, induced a significant increase in hMSH2 expression, whereas chelerythrine or calphostin C, two PKC inhibitors, significantly decreased TPA-induced hMSH2 expression. Reciprocally, treatment of HEL and KG1a cells that exhibited a high level of PKC expression, with chelerythrine significantly decreased hMSH2 and hMSH6 expression. Moreover, the alteration of MMR protein expression paralleled the difference in microsatellite instability and cell sensitivity to 6-thioguanine. Our results suggest that PKC could play a role in regulating MMR protein expression and function in some myeloid leukemia cells.  相似文献   

5.
DNA mismatch repair,microsatellite instability and cancer   总被引:2,自引:0,他引:2  
Mismatch (MMR) repair system plays a significant role in restoration of stability in the genome. Mutations in mismatch repair genes hamper their activity thus bring about a defect in mismatch repair (MMR) mechanism thereby conferring instability in the microsatellite sequences of both the coding and non-coding regions of the genome. Mutated mismatch repair genes result in the expansion or contraction of microsatellite sequence and confer microsatellite unstable or replication error positive phenotype. Hypermethylation of promoter regions of some of the MMR genes also causes inactivation of these genes and thus contribute to MSI. Microsatellite instability is an indicator of MMR deficiency and is a prime cause of varied tumorogenesis.  相似文献   

6.
Microsatellites are DNA elements composed of short tandem repeats of 1-5bp. These sequences are particularly prone to frameshift mutation by insertion-deletion loop formation during replication. The mismatch repair system is responsible for correcting these replication errors, and microsatellite mutation rates are significantly elevated in the absence of mismatch repair. We have investigated the effect of varying the number of repeats in a (CA)n microsatellite on mutation rates in cultured mammalian cells proficient or deficient in mismatch repair. We have also compared the relative rates of single-repeat insertions and deletions in these cells. Two plasmid vectors were constructed for each repeat unit number (n=8, 17, and 30), such that the microsatellites, placed upstream of a bacterial neomycin resistance gene (neo), disrupted the reading frame of the gene in the (-1) or (+1) direction. Plasmids were introduced separately into the cells, where they integrated into the cellular genome. Mutation rates were determined by selection of clones with frameshift mutations in the microsatellite that restored the reading frame of the neo gene. We found that mutation rates were significantly higher for (CA)17 and (CA)30 tracts than for (CA)8 tracts in both mismatch repair proficient (mouse) and deficient (human) cells. A mutational bias favoring insertions was generally observed. In both (CA)17 and (CA)30 tracts, single-repeat insertion rates were higher than single-repeat deletion rates with or without mismatch repair; deletions of multiple repeat units (> or =8bp) were observed in these tracts, where as deletions this large were not found in the (CA)8 tract. Single-repeat mutations of both types were made at similar rates in (CA)8 tracts in human mismatch repair deficient (MMR-) cells, but single-repeat insertion rates were higher than single-repeat deletion rates in mouse mismatch repair proficient (MMR+) cells. Results of these direct studies on microsatellite mutations in cultured cells should be useful for refinement of mathematical models for microsatellite evolution.  相似文献   

7.
Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR) genes, most frequently MLH1 and MSH2. Recently, MMR-deficient crypt foci (MMR-DCF) have been identified as a novel lesion which occurs at high frequency in the intestinal mucosa from Lynch syndrome mutation carriers, but very rarely progress to cancer. To shed light on molecular alterations and clinical associations of MMR-DCF, we systematically searched the intestinal mucosa from Lynch syndrome patients for MMR-DCF by immunohistochemistry. The identified lesions were characterised for alterations in microsatellite-bearing genes with proven or suspected role in malignant transformation. We demonstrate that the prevalence of MMR-DCF (mean 0.84 MMR-DCF per 1 cm2 mucosa in the colorectum of Lynch syndrome patients) was significantly associated with patients’ age, but not with patients’ gender. No MMR-DCF were detectable in the mucosa of patients with sporadic MSI-H colorectal cancer (n = 12). Microsatellite instability of at least one tested marker was detected in 89% of the MMR-DCF examined, indicating an immediate onset of microsatellite instability after MMR gene inactivation. Coding microsatellite mutations were most frequent in the genes HT001 (ASTE1) with 33%, followed by AIM2 (17%) and BAX (10%). Though MMR deficiency alone appears to be insufficient for malignant transformation, it leads to measurable microsatellite instability even in single MMR-deficient crypts. Our data indicate for the first time that the frequency of MMR-DCF increases with patients’ age. Similar patterns of coding microsatellite instability in MMR-DCF and MMR-deficient cancers suggest that certain combinations of coding microsatellite mutations, including mutations of the HT001, AIM2 and BAX gene, may contribute to the progression of MMR-deficient lesions into MMR-deficient cancers.  相似文献   

8.
Maintenance of genomic integrity is essential for cell survival, and genomic instability is a commonly recognized intrinsic property of all cancers. Microsatellite instability (MSI) represents a frequently occurring and easily traceable simple form of sequence variation, signified by the contraction or expansion of specific DNA sequences containing short tandem repeats. MSI is frequently detected in tumor cells with DNA mismatch repair (MMR) deficiency. It is commonly conceived that instability at individual microsatellite loci can arise spontaneously in cells independent of MMR status, and different microsatellite loci are generally not affected uniformly by MMR deficiency. It is well recognized that MMR deficiency per se is not sufficient to initiate tumorigenesis; rather, the biological effects have to be exerted by mutations in genes controlling cell survival, DNA damage response, and apoptosis. Recently, shortening of an intronic hMRE11 poly(T)11 tract has been associated with MMR deficiency, raising the possibility that hMRE11 may be inactivated by defective MMR. However, the molecular nature underlying this association is presently unknown, and review of the current literature suggests that hMRE11 is most likely involved with the MMR pathway in a more complex fashion than simply being a MMR target gene. An alternative scenario is proposed to better reconcile the differences among various studies. The potential role of hMRE11 in telomere repeats stability is also discussed.  相似文献   

9.
Genomic instability in colorectal cancer is categorized into two distinct classes: chromosome instability (CIN) and microsatellite instability (MSI). MSI is the result of mutations in the mismatch repair (MMR) machinery, whereas CIN is often thought to be associated with a disruption in the APC gene. Clinical data has recently shown the presence of heterozygous mutations in ATR and Chk1 in human cancers that exhibit MSI, suggesting that those mutations may contribute to tumorigenesis. To determine whether reduced activity in the DNA damage checkpoint pathway would cooperate with MMR deficiency to induce CIN, we used siRNA strategies to partially decrease the expression of ATR or Chk1 in MMR-deficient colorectal cancer cells. The resultant cancer cells display a typical CIN phenotype, as characterized by an increase in the number of chromosomal abnormalities. Importantly, restoration of MMR proficiency completely inhibited induction of the CIN phenotype, indicating that the combination of partial checkpoint blockage and MMR deficiency is necessary to trigger CIN. Moreover, disruption of ATR and Chk1 in MMR-deficient cells enhanced the sensitivity to treatment with the commonly used colorectal chemotherapeutic compound, 5-fluorouracil. These results provide a basis for the development of a combination therapy for those cancer patients.  相似文献   

10.
The ataxia-telangiectasia mutated and rad3-related (ATR) kinase orchestrates cellular responses to DNA damage and replication stress. Complete loss of ATR function leads to chromosomal instability and cell death. However, heterozygous ATR mutations are found in human cancers with microsatellite instability, suggesting that ATR haploinsufficiency contributes to tumorigenesis. To test this possibility, we generated human cell line and mouse model systems in which a single ATR allele was inactivated on a mismatch repair (MMR)-deficient background. Monoallelic ATR gene targeting in MLH1-deficient HCT 116 colon carcinoma cells resulted in hypersensitivity to genotoxic stress accompanied by dramatic increases in fragile site instability, and chromosomal amplifications and rearrangements. The ATR(+/-) HCT 116 cells also displayed compromised activation of Chk1, an important downstream target for ATR. In complementary studies, we demonstrated that mice bearing the same Atr(+/-)/Mlh1(-/-) genotype were highly prone to both embryonic lethality and early tumor development. These results demonstrate that MMR proteins and ATR functionally interact during the cellular response to genotoxic stress, and that ATR serves as a haploinsufficient tumor suppressor in MMR-deficient cells.  相似文献   

11.
DNA错配修复与癌症的发生及治疗   总被引:3,自引:0,他引:3  
DNA错配修复是细胞复制后的一种修复机制,具有维持DNA复制保真度,控制基因变异的作用。DNA错配修复缺陷使整个基因组不稳定,最终会导致肿瘤和癌症的发生。DNA错配修复系统不仅通过矫正在DNA重组和复制过程中产生的碱基错配而保持基因组的稳定,而且通过诱导DNA损伤细胞的凋亡而消除由突变细胞生长形成的癌变。错配修复缺陷细胞的抗药性也引起了癌症化疗研究方面的关注。大多数情况下,错配修复健全型细胞对肿瘤化疗药物敏感,而错配修复缺陷细胞却有较高的抗性。DNA错配修复系统通过修复和诱导细胞凋亡维护基因组稳定的功能,显示了错配修复途径在癌症生物学和分子医学中的重要性。  相似文献   

12.
We here reconstitute a minimal mammalian mitochondrial DNA (mtDNA) replisome in vitro. The mtDNA polymerase (POLgamma) cannot use double-stranded DNA (dsDNA) as template for DNA synthesis. Similarly, the TWINKLE DNA helicase is unable to unwind longer stretches of dsDNA. In combination, POLgamma and TWINKLE form a processive replication machinery, which can use dsDNA as template to synthesize single-stranded DNA (ssDNA) molecules of about 2 kb. The addition of the mitochondrial ssDNA-binding protein stimulates the reaction further, generating DNA products of about 16 kb, the size of the mammalian mtDNA molecule. The observed DNA synthesis rate is 180 base pairs (bp)/min, corresponding closely to the previously calculated value of 270 bp/min for in vivo DNA replication. Our findings provide the first biochemical evidence that TWINKLE is the helicase at the mitochondrial DNA replication fork. Furthermore, mutations in TWINKLE and POLgamma cause autosomal dominant progressive external ophthalmoplegia (adPEO), a disorder associated with deletions in mitochondrial DNA. The functional interactions between TWINKLE and POLgamma thus explain why mutations in these two proteins cause an identical syndrome.  相似文献   

13.
Vo AT  Zhu F  Wu X  Yuan F  Gao Y  Gu L  Li GM  Lee TH  Her C 《EMBO reports》2005,6(5):438-444
DNA mismatch repair (MMR) is essential in the surveillance of accurate transmission of genetic information, and defects in this pathway lead to microsatellite instability and hereditary nonpolyposis colorectal cancer (HNPCC). Our previous study raised the possibility that hMRE11 might be involved in MMR through physical interaction with hMLH1. Here, we show that hMRE11 deficiency leads to significant increase in MSI for both mono- and dinucleotide sequences. Furthermore, RNA-interference-mediated hMRE11-knockdown in HeLa cells results in MMR deficiency. Analysis of seven HNPCC-associated hMLH1 missense mutations located within the hMRE11-interacting domain shows that four mutations (L574P, K618T, R659P and A681T) cause near-complete disruption of the interaction between hMRE11 and hMLH1, and two mutations (Q542L and L582V) cause a 30% reduction of protein interaction. These findings indicate that hMRE11 represents a functional component of the MMR pathway and the disruption of hMLH1-hMRE11 interaction could be an alternative molecular explanation for hMLH1 mutations in a subset of HNPCC tumours.  相似文献   

14.
The DNA mismatch repair system (MMR) maintains genome stability through recognition and repair of single-base mismatches and small insertion-deletion loops. Inactivation of the MMR pathway causes microsatellite instability and the accumulation of genomic mutations that can cause or contribute to cancer. In fact, 10-20% of certain solid and hematologic cancers are MMR-deficient. MMR-deficient cancers do not respond to some standard of care chemotherapeutics because of presumed increased tolerance of DNA damage, highlighting the need for novel therapeutic drugs. Toward this goal, we generated isogenic cancer cell lines for direct comparison of MMR-proficient and MMR-deficient cells. We engineered NCI-H23 lung adenocarcinoma cells to contain a doxycycline-inducible shRNA designed to suppress the expression of the mismatch repair gene MLH1, and compared single cell subclones that were uninduced (MLH1-proficient) versus induced for the MLH1 shRNA (MLH1-deficient). Here we present the characterization of these MMR-inducible cell lines and validate a novel class of rhodium metalloinsertor compounds that differentially inhibit the proliferation of MMR-deficient cancer cells.  相似文献   

15.
Two forms of genetic instability have been described in colorectal cancer: microsatellite instability and chromosomal instability. Microsatellite instability results from mutations in mismatch repair genes; chromosomal instability is the hallmark of many colorectal cancers, although it is not completely understood at the molecular level. As truncations of the Adenomatous Polyposis Coli (APC) gene are found in most colorectal tumours, we thought that mutations in APC might be responsible for chromosomal instability. To test this hypothesis, we examined mouse embryonic stem (ES) cells homozygous for Min (multiple intestinal neoplasia) or Apc1638T alleles. Here we show that Apc mutant ES cells display extensive chromosome and spindle aberrations, providing genetic evidence for a role of APC in chromosome segregation. Consistent with this, APC accumulates at the kinetochore during mitosis. Apc mutant cells form mitotic spindles with an abundance of microtubules that inefficiently connect with kinetochores. This phenotype is recapitulated by the induced expression of a 253-amino-acid carboxy-terminal fragment of APC in microsatellite unstable colorectal cancer cells. We conclude that loss of APC sequences that lie C-terminal to the beta-catenin regulatory domain contributes to chromosomal instability in colorectal cancer.  相似文献   

16.
Defects in DNA mismatch repair (MMR) are the molecular basis of certain cancers, including hematological malignancies. The defects are often caused by mutations in coding regions of MMR genes or promoter methylation of the genes. However, in many cases, despite that a hypermutable phenotype is detected in a patient, no mutations/hypermethylations of MMR genes can be detected. We report here a novel mechanism that a mutation in the MLH1 3'-untranslated region (3'-UTR) leads to MMR deficiency. A relapsed leukemia patient displayed microsatellite instability, but no genetic and epigenetic alterations in key MMR genes were identifiable. Instead, a 3-nucleotide (TTC) deletion in the MLH1 3'-UTR was found in the patient's blood sample. The mutant MLH1 3'-UTR was found to significantly reduce the expressions of both a firefly luciferase reporter gene and an ectopic MLH1 gene in model cell lines. Consistent with these observations, a significant reduction in the steady-state level of MLH1 mRNA was observed in white blood cells of the patient. These findings suggest that the mutant MLH1 3'-UTR can cause a severely reduced/defective MMR activity conferring leukemia relapse, likely by down-regulating MLH1 expression at the mRNA level. Although the exact mechanism by which the mutant 3'-UTR down-regulates the MLH1 mRNA is not known, our findings provide a novel marker for cancers with MMR defects.  相似文献   

17.
Defects in mismatch repair (MMR) genes result in a mutator phenotype by inducing microsatellite instability (MI), a characteristic of hereditary nonpolyposis colorectal cancers (HNPCC) and a subset of sporadic colon tumors. Present models describing the mechanism by which germ line mutations in MMR genes predispose kindreds to HNPCC suggest a “two-hit” inactivation of both alleles of a particular MMR gene. Here we present experimental evidence that a nonsense mutation at codon 134 of the hPMS2 gene is sufficient to reduce MMR and induce MI in cells containing a wild-type hPMS2 allele. These results have significant implications for understanding the relationship between mutagenesis and carcinogenesis and the ability to generate mammalian cells with mutator phenotypes.  相似文献   

18.
Deficient mismatch repair (MMR) is identified as a mutation of one of four major MMR genes and(or) microsatellite instability. These genomic changes are used as markers of MMR status of the heredity nonpolyposis colorectal cancer (HNPCC) spectrum tumors--familial and sporadic tumors of colon and extracolonic cancers fulfilling Amsterdam clinical criteria II. MMR-deficiency results in mutator phenotype and resistance to geno- and cytotoxicity of alkylating agents. The main cytotoxic damage to DNA in response to chemical methylation is O6-methylguanine (O6-mG). The secondary DNA strand breaks, which are formed during the MMR functioning, are proposed to be required for methylation induced cytotoxicity. We have assumed that the secondary double stand breaks (DSB) upon DNA methylation are able to represent functional efficiency of MMR in cells. The purpose of the paper was to test this assumption on human tumor cells differing in MMR-status and pulse-treated with methylnitrosourea (MNU). We used 3 cell lines: HeLa (MMR-competent endometrial tumor cells), HCT116 (MMR-deficient colorectal carcinoma cells), and Colo320 (sigmoid intestine tumor cells with uncharacterized MMR status). DSBs were evaluated with neutral comet assay. Cytotoxicity/viability was evaluated with MTT-asay and apoptotic index (frequency of morphologically determined apoptotic cells). We show that 1) cytotoxic effect of MNU (250 microM) on HeLa cells was exhibited 3 days after pulse-treatment of cells with MNU; 2) DSBs occurred 48 h after the drug treatment but prior to the onset of apoptosis of HeLa cells; 3) MMR-deficient HCT116 cells were resistant to the drug: no decreased viability, DSBs and apoptosis were observed during 3 days after cell treatment. Both cell lines exhibited high sensitivity to etoposide, classical inductor of unrepairable DSBs and p53. Etoposide has been found to induce DSBs in 6-12 h, which was followed by apoptosis (in 24 h). Colo320 cells exhibited intermediate position between HeLa and HCT116 cell lines in regard to sensitivity to MNU according to MTT-assay and the number of secondary DSBs formed in MNU-treated cells. Nevertheless, in contrast to HeLa cells, these breaks did not induce apoptosis in Colo320 cells. Our data confirm the assumption about case/effect relationship between secondary DNA double strand breaks, induced by monofunctional methylating agent MNU, and functioning of MMR in human tumor cells.  相似文献   

19.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLHL. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT 116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

20.
There is increasing evidence that most human cancers contain multiple mutations. By the time a tumor is clinically detectable it may have accumulated tens of thousands of mutations. In normal cells, mutations are rare events occurring at a rate of 10(-10) mutations per nucleotide per cell per generation. We have argued that the mutation rates exhibited by normal human cells are insufficient to account for the large number of mutations found in human cancers, and therefore, that an early event in tumorigenesis is the development of a mutator phenotype. In normal cells, spontaneous and induced DNA damage is balanced by multiple pathways for DNA repair, and most DNA damage is repaired without error. However, in tumor cells this balance may be shifted such that damage overwhelms the repair capacity, resulting in the accumulation of multiple mutations. Our hypothesis is that multiple random mutations occur during carcinogenesis. The sequential mutations that are observed in some human tumors result from selective events required for tumor progression. We consider the possibility that endogenous sources of DNA damage, in particular oxidative DNA damage, may contribute to genomic instability and to a mutator phenotype in some tumors. Endogenous and environmental sources of reactive oxygen species (ROS) are abundant. In tumor cells, antioxidant or DNA repair capacity may be insufficient to compensate for the production of ROS, and these endogenous ROS may be capable of damaging DNA and inducing mutations in critical DNA stability genes. The possibility that oxidative DNA damage could be a significant source of the genomic instability characteristic of human cancers is exciting, because it may be feasible to modulate the extent of oxidative damage through antioxidant therapy. The use of antioxidants to reduce the extent of molecular damage by ROS could delay the progression of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号