首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many flowering plant species, although no major seed crops have been shown to be capable of apomixis. The ability to generate maternal clones and therefore rapidly fix desirable genotypes in crop species could accelerate agricultural breeding strategies. The potential of apomixis as a next-generation breeding technology has contributed to increasing interest in the mechanisms controlling apomixis. In this review, we discuss the progress made toward understanding the genetic and molecular control of apomixis. Research is currently focused on two fronts. One aims to identify and characterize genes causing apomixis in apomictic species that have been developed as model species. The other aims to engineer or switch the sexual seed formation pathway in non-apomictic species, to one that mimics apomixis. Here we describe the major apomictic mechanisms and update knowledge concerning the loci that control them, in addition to presenting candidate genes that may be used as tools for switching the sexual pathway to an apomictic mode of reproduction in crops.  相似文献   

2.
Apomixis technology development-virgin births in farmers' fields?   总被引:1,自引:0,他引:1  
Apomixis is the process of asexual reproduction through seed, in the absence of meiosis and fertilization, generating clonal progeny of maternal origin. Major benefits to agriculture could result from harnessing apomixis in crop plants. Although >400 apomictic plant species are known, apomixis is rare among crop plants, and the transfer of apomixis to crop varieties by conventional breeding has been largely unsuccessful. Because apomictic and sexual pathways are closely related, de novo engineering of apomixis might be achieved in sexually reproducing crops. Early consideration of issues relating to biosafety and intellectual property (IP) management can facilitate the acceptance and deployment of apomixis technology in agriculture.  相似文献   

3.
Most plant species produce genetically variable seeds by the fusion of meiotically reduced egg cells and pollen grains. However, a small proportion of seed plants produces clonal, asexual seeds by the process of apomixis. The fixation of heterosis by apomixis is of great interest for plant breeding. The prospect of changing sexual crop species into apomictic crop species by genetic engineering--apomixis technology--has recently caused a boom in apomixis research. According to evolutionary biological theories, a dominant apomixis gene will rapidly become fixed in an outcrossing sexual population. Therefore, in theory, apomixis transgenes could have unconditional advantages that could result in the uncontrollable spread of the transgenes. By contrast, 'classic' transgenes might only have conditional advantages. Paradoxically, sexual reproduction and not apomixis is common in nature. However, this is no guarantee that apomixis transgenes will be ecologically safe because there could be essential differences between natural and transgenic apomicts.  相似文献   

4.
Apomixis in Coix aquatica Roxb   总被引:1,自引:0,他引:1  
When plants of Coix aquatica Roxb. were grown in isolation orbagged, with removal of staminate spikelets several producedone or two seeds, and one plant formed several seeds. Thesewere presumably formed through apomixis, of the autogamous type.Apomixis occurs side by side with sexual reproduction, and istherefore facultative. The fact that one of the plants grownunder the same conditions had higher apomictic seed set thanothers, and both its apomictic and selfed progeny also showedhigher apomictic seed formation suggests that these have greaterapomictic potentialities than others. Genetic analysis of apomixissuggests that it is recessive to sexuality, and is probablygoverned by a number of genes. A few triploids tested did notshow any apomictic seed set indicating that polyploidy per semay not be responsible for initiation of apomixis. Except thatit is a diploid, C. aquatica seems to fulfil the criteria forapomixis, yet it reproduces predominantly by sexual means.  相似文献   

5.
Apomixis in agriculture: the quest for clonal seeds   总被引:8,自引:0,他引:8  
Apomixis, or asexual reproduction through seeds, is a natural trait that could have an immense positive impact on crop production. Apomictic breeding strategies could allow the fixation and indefinite propagation of any desired genotype, however complex. Apomicts display a wide variety of developmental mechanisms, which can be viewed as a short-circuiting of sexual development. Gametophytic and sporophytic apomixis are distinguished by the developmental origin of apomictically derived embryos. Genetic studies suggest that individual elements of gametophytic apomixis, such as apomeiosis and parthenogenesis, are either controlled by one or two dominant Mendelian factors. As recombination around apomeiosis loci is suppressed, it is currently not known how complex these loci are. Much less is known regarding the genetic control of sporophytic apomixis but initial studies suggest a complex genetic control. Genetic analyses of sexual reproduction in plant model systems have identified genes that, when mutated, display elements of apomixis. Such studies help in the identification of candidate genes and promoters that can be used for the de novo engineering of apomixis through biotechnology. Molecular genetic studies in apomictic and sexual systems will generate the knowledge necessary for the engineering of conditional apomixis technology. Approaches encouraging collaboration and widespread dissemination of the acquired knowledge will constitute the most innovative route to the development, deployment and acceptance of apomixis technology in agriculture.  相似文献   

6.
Apomixis in plant reproduction: a novel perspective on an old dilemma   总被引:1,自引:0,他引:1  
Seed is one of the key factors of crop productivity. Therefore, a comprehension of the mechanisms underlying seed formation in cultivated plants is crucial for the quantitative and qualitative progress of agricultural production. In angiosperms, two pathways of reproduction through seed exist: sexual or amphimictic, and asexual or apomictic; the former is largely exploited by seed companies for breeding new varieties, whereas the latter is receiving continuously increasing attention from both scientific and industrial sectors in basic research projects. If apomixis is engineered into sexual crops in a controlled manner, its impact on agriculture will be broad and profound. In fact, apomixis will allow clonal seed production and thus enable efficient and consistent yields of high-quality seeds, fruits, and vegetables at lower costs. The development of apomixis technology is expected to have a revolutionary impact on agricultural and food production by reducing cost and breeding time, and avoiding the complications that are typical of sexual reproduction (e.g., incompatibility barriers) and vegetative propagation (e.g., viral transfer). However, the development of apomixis technology in agriculture requires a deeper knowledge of the mechanisms that regulate reproductive development in plants. This knowledge is a necessary prerequisite to understanding the genetic control of the apomictic process and its deviations from the sexual process. Our molecular understanding of apomixis will be greatly advanced when genes that are specifically or differentially expressed during embryo and embryo sac formation are discovered. In our review, we report the main findings on this subject by examining two approaches: i) analysis of the apomictic process in natural apomictic species to search for genes controlling apomixis and ii) analysis of gene mutations resembling apomixis or its components in species that normally reproduce sexually. In fact, our opinion is that a novel perspective on this old dilemma pertaining to the molecular control of apomixis can emerge from a cross-check among candidate genes in natural apomicts and a high-throughput analysis of sexual mutants.  相似文献   

7.
Apomixis is defined as the asexual plant reproduction through seeds that results in the production of genetically uniform progeny. In fact, apomixis could be considered as a natural way of cloning. Currently there are more than 400 plant species known to use apomixis as a strategy for their propagation. The primary fundamental aspects of apomixis are the bypassing of meiosis and parthenogenetic development of the embryo without fertilization Apomixis attracts special attention because of its potential value for agriculture, as it could be harnessed for plant breeding programs enabling the permanent fixation of heterosis in crop plants. A better understanding of the molecular and genetic regulation of apomixis is important for developmental and evolutionary perspectives but also for implementation of engineering of apomixis traits into agricultural crop plants. Despite apomixis is considered as one of the key technologies for the improving agriculture, it is currently not fully known how the genetic and molecular regulation of this important trait occurs. In this review, an up to date information on the biology of apomixis and the known genes and genetic loci associated with regulation of different components of apomixis is provided.  相似文献   

8.
Some angiosperms reproduce by apomixis, a natural way of cloning through seeds. Apomictic plants bypass both meiosis and egg cell fertilization, producing progeny that are genetic replicas of the mother plant. In this report, we analyze reproductive development in Tripsacum dactyloides, an apomictic relative of maize, and in experimental apomictic hybrids between maize and Tripsacum. We show that apomictic reproduction is characterized by an alteration of developmental timing of both sporogenesis and early embryo development. The absence of female meiosis in apomictic Tripsacum results from an early termination of female meiosis. Similarly, parthenogenetic development of a maternal embryo in apomicts results from precocious induction of early embryogenesis events. We also show that male meiosis in apomicts is characterized by comparable asynchronous expression of developmental stages. Apomixis thus results in an array of possible phenotypes, including wild-type sexual development. Overall, our observations suggest that apomixis in Tripsacum is a heterochronic phenotype; i.e., it relies on a deregulation of the timing of reproductive events, rather than on the alteration of a specific component of the reproductive pathway.  相似文献   

9.

Background

Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm.

Scope

In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.  相似文献   

10.
11.
Apomixis is a particular mode of reproduction that allows progeny formation without meiosis and fertilization. Eulaliopsis binata, a tetraploid apomictic species, is widely used for making paper, rope and mats. There is great potential for fixation of heterosis in E. binata due to autonomous endosperm formation in this species. Although most of its embryo sac originates from nucellus cells, termed apospory, we observed sexual reproduction initiation in 86.8 to 96.8% of the ovules, evidenced by callose deposition on the walls of cells undergoing megasporogenesis. However, only 2-3% mature polygonum-type sexual embryo sacs were confirmed by embryological investigation. Callose was not detected on aposporous initial cell walls. The aposporous initial cells differentiated during pre- and post-meiosis of the megaspore mother cell, while the sexual embryo sac degenerated at the megaspore stage. DNA content ratio of embryo and endosperm in some individuals was 2C:3C, based on flow cytometry screening of seed, similar to that of normal sexual seed. These results confirm that apomictic E. binata has conserved sexual reproduction to a certain degree, which may contribute to maintaining genetic diversity. The finding of sexual reproduction in apomictic E. binata could be useful for research on genetic mechanism of apomixis in E. binata.  相似文献   

12.
The mode of reproduction was characterized for 113 accessions of the tetraploid facultative apomictic species Hypericum perforatum using bulked or single mature seeds in the flow cytometric seed screen (FCSS). This screen discriminates several processes of sexual or asexual reproduction based on DNA contents of embryo and endosperm nuclei. Seed formation in H. perforatum proved to be highly polymorphic. Eleven different routes of reproduction were determined. For the first time, individual seeds were identified that originated from two embryo sacs: the endosperm from an aposporous and the embryo from the legitimate meiotic embryo sac. Moreover, diploid plants were discovered, which apparently reproduce by a hitherto unknown route of seed formation, that is chromosome doubling within aposporous initial cells followed by double fertilization. Although most plants were tetraploid and facultative sexual/apomictic, diploid obligate sexuals and tetraploid obligate apomicts could be selected. Additionally, genotypes were detected which at a high frequency produced embryos either from reduced parthenogenetic or unreduced fertilized egg cells. The endosperm developed most frequently after fertilization of the central cell in aposporous embryo sacs (pseudogamy) but in few cases also autonomously. The genetic control of apomixis appears to be complex in H. perforatum. Basic material was developed for breeding H. perforatum, and strategies are suggested for elucidation of inheritance as well as evolution of apomixis and for molecular approaches of apomixis engineering.  相似文献   

13.
The reproductive system determines the way in which gametes develop and interact to form a new organism. Therefore, it exerts the primary level of control of genotypic frequencies in plant populations, and plays a fundamental role in plant breeding. A basic understanding of plant reproductive development will completely transform current breeding strategies used for seed production. Apomixis is an asexual form of reproduction in which embryogenesis occurs in a cell lineage lacking both meiosis and fertilization, and that culminates in the formation of viable progeny genetically identical to the mother plant. The transfer of apomixis into sexual crops will allow the production of self-perpetuating improved hybrids, and the fixation of any desired heterozygous genotype. The initiation of apomictic development invariably takes place at early stages of ovule ontogeny, before the establishment of the megagametophytic phase. The developmental versatility associated with megagametophyte formation suggests that the genetic and molecular regulation of apomixis is intimately related to the regulation of sexuality. Differences between the initiation of sexual and apomictic development may be determined by regulatory genes that act during megasporogenesis, and that control events leading to the formation of unreduced female gametophytes. To test this hypothesis, we are isolating and characterizing genes that act during megasporogenesis inArabidopsis thaliana and investigating their potential role in the induction of apomixis. We are using a recently established transposon-based enhancer detection and gene trap insertional mutagenesis system that allows the identification of genes based on their expression patterns. An initial screen of transposants has yielded over 20 lines conferring restricted GUS expression during early ovule development. We have obtained the sequence of genomic fragments flanking the transposon insertion. Several have homology to genes playing important roles in plant and animal development. They include cell cycle regulators, enzymes involved in callose hydrolysis, leucine-rich repeat protein kinase receptors, and expressed sequence tags (ESTs) of unknown function. Independently, a genetic screen allows the identification of female sterile mutants defective in megasporogenesis. Results from these experiments will improve our basic understanding of reproductive development in plants, and will set the basis for a sustained effort in plant germ line biotechnology, a first step toward a flexible transfer of apomixis into a large variety of sexual crops.  相似文献   

14.
植物无融合生殖研究进展   总被引:4,自引:0,他引:4  
植物无融合生殖是一种特殊的无性生殖方式 ,它不经过精卵融合即可繁殖后代 ,其二倍体子代基因型与母本精确相同 ,可以固定杂种优势 ,对于作物育种等工作具有巨大的经济意义。对无融合生殖的分类、遗传进化、发生机制、分子机理等方面进行了介绍。并对无融合生殖的一些最新的研究进展 :无孢子生殖专化基因组区、脱调节理论、基因组冲撞观点、表观遗传基因调节理论等进行了简要的评述。并简单介绍了无融合生殖甜菜单体附加系目前的研究进展 。  相似文献   

15.
Asexual reproduction through seeds, or apomixis, is widespread in angiosperms, although does not happen frequently. It occurs in no major crop plant, but its deployment in major crops would afford advantages for breeding and maintenance of hybrid genotypes. Deployment is still a long-term goal, however, since the genetic mechanisms underlying apomixis in nature have not been determined nor has the isolation of apomictic mutants in sexual plants been achieved. Nevertheless, an increasing intensity of research toward these goals over the last decade has greatly expanded our knowledge of genome structure and gene expression in naturally occurring apomicts and female gametophyte development in sexual plants. A common working hypothesis is that apomixis is a “deregulation” of sexual processes and is increasingly supported by gene expression data. Nevertheless, the search for a unique trigger that initiates apomictic development still cannot be disqualified. Further characterization of female gametophyte-related genes and genomes of apomicts and model sexual plants will be fruitful for identifying overlaps in developmental networks.

  相似文献   


16.
Apomixis is a form of asexual reproduction that in plants leads to the production of seed progeny that are exact copies of the mother individual. A mapping population generated by backcrossing a sexual with an apomictic genotype of Paspalum simplex, both at the tetraploid level, was used to find markers co-segregating with apomixis. Genetic analysis showed that apomixis is under the control of a single dominant allele assuming a random chromatid assortment. Five rice markers, mapped in the telomeric region of the long arm of rice chromosome 12, showed tight linkage with apomixis. Genetic and molecular data strongly indicate that the potentiality to express apomixis in P. simplex is given by a relatively large chromosome segment that is inherited as a single genetic unit.  相似文献   

17.
Apomixis means seed formation without fertilization. In cassava (Manihot esculenta) it is an alternative to reproduction by cuttings, which normally transmits pathogens and leads to an accumulation of viral and bacterial diseases. Apomixis also assures preservation of heterosis and avoids genetic segregation. It occurs in wild relatives of cassava and has been transferred successfully from Manihot glaziovii and M. neusana. It is facultative, and occurs at a low frequency, ranging from 1-2%, and apparently is genetically different from apomixis in other crops. With selection, the frequency can reach 13%. Apomixis in cassava is frequently associated with aneuploidy but it does occur in some diploid types. It is due to the formation of aposporic sacs, which can easily be detected by clearing tissue preparations. Apomixis appears to have played an important role in speciation during the evolution of Manihot, since it leads to the maintenance and perpetuation of sterile interspecific hybridization. The use of apomixis in cassava breeding could lead to a boom in line improvement and commercial production. In addition to preserving superior genotypes, avoiding contamination of new plants, it would enable international programs to export their germplasm to destination countries. This would allow the use of superior genotypes even if apomixis occurs at a low frequency. A scheme to maximize benefits is to use diploid apomictic clones as maternal parents, which can be crossed with pollinators of polyploid interspecific hybrids, followed by selection among the progeny of new apomictic types that combine the heteroses of both interspecific hybridization and polyploidy. In addition, they acquire favored genes that have been transferred from the wild to the commercial crop.  相似文献   

18.

Background and Aims

Apomictic plants maintain functional pollen, and via pollination the genetic factors controlling apomixis can be potentially transferred to congeneric sexual populations. In contrast, the sexual individuals do not fertilize apomictic plants which produce seeds without fertilization of the egg cells. This unidirectional introgressive hybridization is expected finally to replace sexuality by apomixis and is thought to be a causal factor for the wide geographical distribution of apomictic complexes. Nevertheless, this process may be inhibited by induced selfing (mentor effects) of otherwise self-incompatible sexual individuals. Here whether mentor effects or actual cross-fertilization takes place between diploid sexual and polyploid apomictic cytotypes in the Ranunculus auricomus complex was tested via experimental crosses.

Methods

Diploid sexual mother plants were pollinated with tetra- and hexaploid apomictic pollen donators by hand, and the amount of well-developed seed compared with aborted seed was evaluated. The reproductive pathways were assessed in the well-developed seed via flow cytometric seed screen (FCSS).

Key Results

The majority of seed was aborted; the well-developed seeds have resulted from both mentor effects and cross-fertilization at very low frequencies (1·3 and 1·6 % of achenes, respectively). Pollination by 4x apomictic pollen plants results more frequently in cross-fertilization, whereas pollen from 6x plants more frequently induced mentor effects.

Conclusions

It is concluded that introgression of apomixis into sexual populations is limited by ploidy barriers in the R. auricomus complex, and to a minor extent by mentor effects. In mixed populations, sexuality cannot be replaced by apomixis because the higher fertility of sexual populations still compensates the low frequencies of potential introgression of apomixis.Key words: Apomixis, Ranunculus auricomus, evolution, geographical parthenogenesis, crossing experiments, flow cytometry  相似文献   

19.
Apomixis represents an alteration of classical sexual plant reproduction to produce seeds with essentially clonal embryos, stimulating wide interest from biologists and plant breeders for its ability to fix heterosis. Eulaliopsis binata (Poaceae), is identified here as a new apomictic species. Embryological investigation indicates that the developmental pattern of embryo sac formation in E. binata represents gametophytic apospory, the embryo originating from an unreduced cell, without fertilization and the mode of endosperm development was autonomous. Sexual embryo sacs were found with a frequency of 1–4% depending on the biotype. The DNA content of nuclei (C-value) in mature seeds was screened by flow cytometry (FCSS) and demonstrated that the endosperm was derived autonomously without fertilization and the three biotypes of E. binata showed varying degrees of apomixis. The Wide-leaf type showed obligate apomixis whereas the Slender-leaf and the Red-haulm type displayed facultative apomixis. In addition, adventitious embryos were observed on the wall of ovary, integument and nucellus cells, indicating that E. binata produces embryos via a mixture of apospory and adventitious embryony.  相似文献   

20.
? Premise of the study: The evolution of asexual seed production (apomixis) from sexual relatives is a great enigma of plant biology. The genus Boechera is ideal for studying apomixis because of its close relation to Arabidopsis and the occurrence of sexual and apomictic species at low ploidy levels (diploid and triploid). Apomixis is characterized by three components: unreduced embryo-sac formation (apomeiosis), fertilization-independent embryogenesis (parthenogenesis), and functional endosperm formation (pseudogamy or autonomous endosperm formation). Understanding the variation in these traits within and between species has been hindered by the laborious histological analyses required to analyze large numbers of samples. ? Methods: To quantify variability for the different components of apomictic seed development, we developed a high-throughput flow cytometric seed screen technique to measure embryo:endosperm ploidy in over 22000 single seeds derived from 71 accessions of diploid and triploid Boechera. ? Key results: Three interrelated features were identified within and among Boechera species: (1) variation for most traits associated with apomictic seed formation, (2) three levels of apomeiosis expression (low, high, obligate), and (3) correlations between apomeiosis and parthenogenesis/pseudogamy. ? Conclusions: The data presented here provide a framework for choosing specific genotypes for correlations with large "omics" data sets being collected for Boechera to study population structure, gene flow, and evolution of specific traits. We hypothesize that low levels of apomeiosis represent an ancestral condition of Boechera, whereas high apomeiosis levels may have been induced by global gene regulatory changes associated with hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号