共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
5.
H Y Rienhoff 《The Journal of biological chemistry》1989,264(1):419-425
6.
We identify and describe the properties of an enhancer within the chicken alpha-globin gene cluster. This cluster consists of one gene (pi) expressed only in primitive erythrocytes and two (alpha A and alpha D) expressed in both primitive and definitive cell lineages. The genes are linked together in the order 5'-pi-alpha D-alpha A-3' and occupy a region about 10 kilobase pairs long. The enhancer is located at the 3' end of the cluster, about 750 base pairs 3' to the alpha A translation stop site. When assayed by transfection into either primitive or definitive primary chicken erythrocytes, this element stimulated expression from plasmids containing the alpha D- or alpha A-globulin gene promoters. Except for sites in the alpha-globin promoters, no other stimulatory activity was observed in DNA taken from other regions of the alpha-globin locus. Moderate resolution DNase I hypersensitivity studies as well as DNase I footprinting revealed three regions of protein binding, each containing a similar core DNA sequence within the enhancer element. Gel mobility shift studies demonstrated that all three regions bind the recently identified erythrocyte-specific factor, EryfI, which has binding sites in the regulatory regions of all chicken globin genes. Our data suggest that the enhancer we have identified may act in vivo only on the alpha A gene; expression of the alpha D gene is affected by another EryfI site located in the alpha D promoter. Such a mechanism would be consistent with the observed relative abundances of alpha A- and alpha D-globin in vivo. The simplicity of these regulatory elements may reflect the limited repertoire of expression of these genes during development. 相似文献
7.
8.
The Hox1 gene in the urochordate ascidian Ciona intestinalis (Ci‐Hox1) is expressed in the nerve cord and epidermis. We identified a nerve cord enhancer in the second intron of Ci‐Hox1, and demonstrated that retinoic acid (RA) plays a major role in activating this enhancer. The enhancer contained a putative retinoic acid‐response element (RARE). Mutation of the RARE in the Ci‐Hox1 nerve cord enhancer only partially abolished the enhancer activity. Genes encoding RA synthase and the RA receptor were knocked down using specific antisense morpholino oligos (MOs), and injection of embryos with these MOs resulted in the complete disappearance of epidermal expression of Ci‐Hox1 and reduction of neural expression. However, nerve cord expression was not completely repressed. These results suggest that the nerve cord enhancer is activated by two partially redundant pathways; one RA‐dependent and one RA‐independent. 相似文献
9.
We have used a Prx1 limb enhancer to drive expression of Cre Recombinase in transgenic mice. This regulatory element leads to Cre expression throughout the early limb bud mesenchyme and in a subset of craniofacial mesenchyme. Crossing a murine line carrying this transgene to a reporter mouse harboring a floxed Cre-reporter cassette revealed that recombinase activity is first observed in the earliest limb bud at 9.5 dpc. By early to mid bud stages at 10.5 dpc recombination is essentially complete in all mesenchymal cells in the limb. Expression of the Cre recombinase was never detected in the limb bud ectoderm. The use of Prx1-Cre mice should facilitate analysis of gene function in the developing limb. 相似文献
10.
11.
12.
13.
14.
15.
Identification of a decidua-specific enhancer on the human prolactin gene with two critical activator protein 1 (AP-1) binding sites 总被引:2,自引:0,他引:2
Watanabe K Kessler CA Bachurski CJ Kanda Y Richardson BD Stanek J Handwerger S Brar AK 《Molecular endocrinology (Baltimore, Md.)》2001,15(4):638-653
Deletion analysis of the human PRL promoter in endometrial stromal cells decidualized in vitro revealed a 536-bp enhancer located between nucleotide (nt) -2,040 to -1,505 in the 5'-flanking region. The 536-bp enhancer fragment ligated into a thymidine kinase (TK) promoter-luciferase reporter plasmid conferred enhancer activity in decidual-type cells but not nondecidual cells. DNase I footprint analysis of decidualized endometrial stromal cells revealed three protected regions, FP1-FP3. Transfection of overlapping 100-bp fragments of the 536-bp enhancer indicated that FP1 and FP3 each conferred enhancer activity. Gel shift assays indicated that both FP1 and FP3 bind activator protein 1 (AP-1), and JunD and Fra-2 are components of the AP-1 complex in decidual fibroblasts. Mutation of the AP-1 binding site in either FP1 or FP3 decreased enhancer activity by approximately 50%, while mutation of both sites almost completely abolished activity. Coexpression of the 536-bp enhancer and A-fos, a dominant negative to AP-1, decreased enhancer activity by approximately 70%. Conversely, coexpression of Fra-2 in combination with JunD or c-Jun and p300 increased enhancer activity 6- to 10-fold. Introduction of JunD and Fra-2 into nondecidual cells is sufficient to confer enhancer activity. JunD and Fra-2 protein expression was markedly increased in secretory phase endometrium and decidua of early pregnancy (high PRL content) compared with proliferative phase endometrium (no PRL). These investigations indicate that the 5'-flanking region of the human PRL gene contains a decidua-specific enhancer between nt -2,040/-1,505 and AP-1 binding sites within this enhancer region are critical for activity. 相似文献
16.
17.
18.
Kazuhiro Kunimasa Sachi Kuranuki Nobuyasu Matsuura Nozomi Iwasaki Megumi Ikeda Akira Ito Yutaka Sashida Yoshihiro Mimaki Masamichi Yano Mayumi Sato Yasuhiro Igarashi Tsutomu Oikawa 《Bioorganic & medicinal chemistry letters》2009,19(7):2062-2064
Adiponectin, an adipocyte-derived protein with insulin-sensitizing, anti-diabetic and anti-atherogenic activities, is known to be induced during adipocyte differentiation. Nobiletin, a citrus polymethoxy flavonoid, was found to induce the differentiation of ST-13 preadipocytes into mature adipocytes and enhance the production of adiponectin protein at a concentration of 10 μM. 相似文献
19.