首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
L A Carr  J K Basham 《Life sciences》1991,48(12):1173-1177
Exposure to cigarette smoke has been found to attenuate the reduction in striatal dopamine levels caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice and to inhibit monoamine oxidase (MAO) activity in brain tissue. To confirm whether specific smoke constituents which have been reported to protect against MPTP toxicity were responsible for these effects, mice were treated chronically with nicotine, 4-phenylpyridine and hydrazine. Although all three compounds prevented the decrease in dopamine metabolite levels induced by MPTP, there was no significant effect on dopamine levels. None of the three compounds inhibited MAO activity in cerebral tissue following treatment in vivo. However, an extract of tobacco smoke particulate matter caused a marked inhibition of MAO A and MAO B activity when added in vitro. The results suggest that one or more unidentified substances in tobacco smoke are capable of inhibiting brain MAO and perhaps altering the formation of the active metabolite of MPTP.  相似文献   

2.
Ro JS  Lee SS  Lee KS  Lee MK 《Life sciences》2001,70(6):639-645
The inhibitory effects of coptisine, a protoberberine isoquinoline alkaloid, on type A and type B monoamine oxidase (MAO-A and MAO-B) activities in mouse brain were investigated. Coptisine showed an inhibitory effect on MAO-A activity in a concentration-dependent manner using a substrate kynuramine, but coptisine did not inhibit MAO-B activity. Coptisine exhibited 54.3% inhibition of MAO-A activity at 2 microM. The values of Km and Vmax of MAO-A were 151.9 +/- 0.6 microM and 0.40 +/- 0.03 nmol/min/mg protein, respectively (n=5). Coptisine competitively inhibited MAO-A activity with kynuramine. The Ki value of coptisine was 3.3 microM. The inhibition of MAO-A by coptisine was found to be reversible by dialysis of the incubation mixture. These results suggest that coptisine is a potent reversible inhibitor of MAO-A, and that coptisine functions to regulate the catecholamine content.  相似文献   

3.
Developmental changes in monoamine oxidase (MAO) activity in the mouse brain were investigated with the substrates -phenylethylamine (PEA), tryptamine, and 5-hydroxytryptamine (5-HT). In the newborn brain, MAO activity towards PEA was found to be much lower than the adult and to be inhibited by clorgyline in a double-sigmoidal fashion. The inhibition curve shifted to a single-sigmoidal pattern with age. MAO activity towards 5-HT as substrate was inhibited by 90% and in a single-sigmoidal manner by clorgyline throughout the postnatal life. Lineweaver-Burk plots with PEA as substrate presented two linear lines (apparentK m: 28.6 and 4.1 M) for the newborn and one line (apparentK m: 11.4 M) for the adult, respectively. The plot with highK m value for the newborn brain disappeared in a clorgyline-treated preparation. These findings suggest that age-dependent alterations in the ratio of MAO-A/MAO-B activity affect the substrate specificity of the enzyme.  相似文献   

4.
5.
We have studied striatal dopamine (DA) metabolism in monoamine oxidase (MAO) B-deficient mice using brain microdialysis. Baseline DA levels were similar in wild-type and knock-out (KO) mice. Administration of a selective MAO A inhibitor, clorgyline (2 mg/kg), increased DA levels and decreased levels of its metabolites in all mice, but a selective MAO B inhibitor, l-deprenyl (1 mg/ kg), had no effect. Administration of 10 and 50 mg/kg L-DOPA, the precursor of DA, increased the levels of DA similarly in wild-type and KO mice. The highest dose of L-DOPA (100 mg/kg) produced a larger increase in DA in KO than wild-type mice. This difference was abolished by pretreating wild-type mice with l-deprenyl. These results suggest that in mice, DA is only metabolized by MAO A under basal conditions and by both MAO A and B at high concentrations. This is in contrast to the rat, where DA is always metabolized by MAO A regardless of concentration.  相似文献   

6.
7.
8.
Monoamine oxidase (MAO) plays an important role in the metabolism of neuro-transmitter biogenic amines. Its activity was determined in mouse brain and liver after exposure to different kinds of ionizing radiation and after pretreatment with a radioprotective agent. After a lethal dose of mixed neutron-gamma irradiation the MAO activity decreased in the brain and increased in the liver. In contrast, after a lethal dose of 60Co-gamma irradiation enzyme activity was considerably increased in the brain while in the liver it increased like after mixed neutron-gamma irradiation. AET (S2-aminoethyl-isothiuronium-Br X HBr), when administered in a radio-protective dose, inhibited MAO activity in the brain, while it increased in the liver. Even more marked changes of enzyme activity were observed in both brain and liver after AET pretreatment and mixed neutron-gamma irradiation. On the basis of the results it is suggested that different kinds of ionizing radiation lead to different types of lipid peroxidation in the lipid environment surrounding MAO, an event leading to altered enzyme activity. AET itself inhibited MAO in the brain and increased the activity in the liver but did not prevent the alterations caused by ionizing radiation in enzyme activity.  相似文献   

9.
10.
Uptake kinetics and contents of GABA in cultured, normal (i.e. nontransformed) glia cells obtained from the brain hemispheres of newborn mice were measured together with the activity of the GABA transaminase. During three weeks of culturing the activity of the transaminase rose from a low neonatal value toward the level in the adult brain. The uptake kinetics indicated an unsaturable component together with an uptake following Michaelis-Menten kinetics. Both theK m (40 M) and theV max (0.350 nmol×min–1×mg–1 cell protein) were reasonably comparable to the corresponding values in brain slices, and theV max was much higher than that reported for other glial preparations. The GABA content was low (<5 nmol/mg cell protein), which is in agreement with the high activity of the GABA transaminase.  相似文献   

11.
Effects of microwave irradiation on enzymes and metabolites in mouse brain   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
15.
Effects of long-term cold exposure on the content of serotonin and its metabolite 5-hydroxyindolacetic acid (5-HIAA) and monoamine oxidase (MAO) activity and kinetic parameters (Km and Vmax) of oxidative deamination of serotonin in rat brain stem. The increase of 5-HIAA level in the initial period of chronic cold exposure was determined by the blockade of active metabolite transport from the brain. The level of serotonin and the rate of its catalytic deamination by MAO were found to be decreased in cold-adapted rats. The magnitude of the Km of serotonin deamination was unchanged.  相似文献   

16.
The interaction of the substrate-selective irreversible inhibitor J-508 [N-methyl-N-propargyl-(1-indanyl)-ammonium hydrochloride] with the B form of human brain monoamine oxidase has been investigated, and the conditions necessary for this inhibitor to titrate the concentration of this enzyme form determined. It was found that the concentration of monoamine oxidase-B determined in this way was the same when either benzylamine or -phenethylamine was used to assay for activity, which would indicate that this enzyme form is not heterogeneous. Furthermore, the variation in activity from sample to sample was found to be due to a variation in the concentration of available monoamine oxidase-B active centers, rather than due to a variation in the molecular turnover numbers of this enzyme form towards its amine substrates.  相似文献   

17.
The acute administration of the monoamine oxidase inhibitor iproniazid to rats causes a highly significant suppression of serum prolactin levels at 2 h. At the same time there is a significant rise in the hypothalamic-median eminence concentrations of the biogenic monoamines dopamine, noradrenaline and serotonin. When iproniazid is administered daily to rats for 4 days and the animals are examined on the fifth day brain noradrenaline and serotonin levels are elevated similarly to those seen after acute administration but dopamine concentration is near normal while serum prolactin is significantly elevated. This study thus demonstrates that a quite specific and unexpected change occurs in the regulation of hypothalamic-median eminence dopamine when iproniazid is administered chronically and provides an explanation of previous observations in human subjects where raised serum prolactin levels are observed after chronic therapy with monoamine oxidase inhibitors.  相似文献   

18.
Effect of L-cycloserine on brain GABA metabolism   总被引:6,自引:0,他引:6  
The administration of L-cycloserine to mice resulted in a dramatic decrease in the activities of 4-aminobutyrate:2-oxoglutarate aminotransferase (GABA-T) and L-alanine:2-oxoglutarate aminotransferase (ALA-T) in both brain and liver. L-Aspartate:2-oxoglutarate aminotransferase was inhibited only slightly, and brain glutamic acid decarboxylase not at all. Liver ALA-T activity returned to near normal levels within 24 h of L-cycloserine administration whereas liver GABA-T and brain ALA-T activities had returned only halfway to normal levels in the same time period. The recovery in the activity of brain GABA-T was even slower. A consequence of the inhibition of brain GABA-T activity was an elevation in the GABA content of the tissue which was maximal 3 h after L-cycloserine administration and which was still noticeable 8 h after the drug treatment. L-Cycloserine was also a potent in vitro inhibitor of brain GABA-T activity. The inhibition was competitive with respect to GABA, the Ki value being 3.1 X 10(-5) M. The prior administration of L-cycloserine to mice significantly delayed the onset of isonicotinic acid hydrazide induced convulsions.  相似文献   

19.
1. Increases in the concentrations of lactic acid and pyruvic acid in rat brain during acute dieldrin poisoning are associated with hyperactivity of the brain, whereas an increase in the cerebral alanine concentration occurs before the convulsions. Throughout the dieldrin-induced seizure pattern, fluctuations in the concentration of brain ammonia are out of phase with the actual convulsions. 2. Increases in the concentrations of alanine, ammonia and lactic acid in rat brain accompany picrotoxin-induced seizures; there is no increase in the concentration of glutamine. These changes are consistent with the inhibition of glutamine synthesis. 3. In addition to previously reported changes in the concentrations of intermediary metabolites of the brain after the administration of Telodrin (Hathway & Mallinson, 1964), increases have now been found in the alanine and lactic acid concentrations. Since increases in the alanine and glutamine concentrations occur before the convulsions, liberation of ammonia also occurs before the onset of convulsions and throughout their course. Ammonia-binding mechanisms later become inadequate and free ammonia accumulates in cerebral tissues. 4. An increase in the pyruvic acid concentration of the brain after the intraperitoneal injection of either dieldrin or Telodrin is endogenous in origin. 5. The parenteral administration of a small dose of glutamine increases the cerebral concentrations of alanine and glutamic acid. Some animals previously treated with glutamine resisted Telodrin convulsions. 6. Mechanisms for the disposal of ammonia liberated in brain are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号