首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of steroids with the nuclear envelope   总被引:2,自引:0,他引:2  
Three approaches have been taken to determine the molecular mechanism by which steroid hormones traverse the nuclear envelope on their way to the genome. The first approach involved characterization of steroid binding to nuclear envelope preparations. We have characterized androgen binding to nuclear envelopes isolated from the rat ventral prostate, the rat liver, and androgen-responsive and androgen-unresponsive cell lines of the Shionogi mouse mammary carcinoma and glucocorticoid binding to rat liver. Relatively high affinity binding sites for steroids have been identified on nuclear envelopes. Importantly, the number and specificity of the sites correlates with the responsiveness of the tissue to the steroid. In the second approach, we have undertaken to identify the steroid binding site directly. As the characteristics of the rat ventral prostate site resembled those of the nuclear androgen receptor, we have begun purifying that receptor and have found fast protein liquid chromatography to be very effective. By affinity labelling studies, the dexamethasone binding site on the rat liver nuclear envelope has been identified as a peptide of molecular weight of approximately 90,000. The third approach we have used is to identify androgen-dependent peptides in nuclear envelope preparations. In both the rat ventral prostate and an androgen-responsive cell line of the Shionogi mouse mammary carcinoma, we have identified abundant androgen-dependent peptides. The relationship of these peptides to the binding sites identified by the first two approaches and their role in steroid transport is being investigated.  相似文献   

2.
Binding of highly purified glucocorticoid receptor complexes to nuclear matrix was evaluated. Extraction of purified nuclei with 2M potassium chloride and brief deoxyribonuclease digestion leaves a matrix structure containing 1% of nuclear DNA and 6-12% of nuclear proteins. The nuclear matrix retained two binding sites for receptor complexes, a high affinity, low capacity site and a low affinity, high capacity site. These sites have affinities and capacities consistent with those reported for binding of these complexes to intact nuclei. More extensive deoxyribonuclease treatment of the matrix resulted in a marked reduction of high affinity complex binding. Furthermore, the DNA binding form of the receptor complex but not the unactivated receptor complex bound to DNA fibers anchored to nuclear matrix as visualized by 18 nm gold particle receptor complexes. The data suggest that the nuclear matrix is the major site for coordinating glucocorticoid hormone action in the nucleus.  相似文献   

3.
Nuclear envelopes relatively free of plasma membrane contamination were isolated from the male rat liver. Equilibrium binding of T3 to nuclear envelopes occurred after incubation for 3 h at 20 degrees C. Scatchard analysis revealed two classes of binding sites; a high affinity site having a KD of 1.8 nM with a maximum binding capacity of 14.5 pmol/mg protein and a low affinity site having a KD of 152.1 nM with a maximum binding capacity of 346.8 pmol/mg protein. No degradation of the radioligand occurred during incubation with the nuclear envelope. T4, rT3 and Triac competed effectively for the binding of T3 to the high affinity site whereas only T4 competed well for binding to the lower affinity site. The binding site was protease sensitive but not salt extractable. Multiple T3 binding sites having similar affinities have been reported on plasma membranes. An intriguing possibility is that membrane binding sites may be involved in translocation of thyroid hormone across membrane barriers.  相似文献   

4.
P Smith  C von Holt 《Biochemistry》1981,20(10):2900-2908
Highly purified activated cytoplasmic glucocorticoid hormone receptor binds with high affinity to sites in the nuclear envelope. Nuclear envelope fragments can be isolated from purified chromatin. They bind activated cytoplasmic glucocorticoid receptor with the same equilibrium constant as nuclear envelopes. The presence of envelope components in chromatin is confirmed by the virtual identity of the gel electrophoretic glycoprotein pattern of nuclear envelope, chromatin nonhistones, and nuclear envelope fragments from chromatin.  相似文献   

5.
Binding studies with [3H]dexamethasone identified a class of binding sites on male rat liver microsomes. The binding sites were glucocorticoid-dependent and specific for glucocorticoids and progestins. Scatchard binding parameters, competition studies with triamcinolone acetonide, a synthetic glucocorticoid which competes well for the glucocorticoid receptor, and immunoblotting with an antiglucocorticoid receptor antibody indicated that these sites are distinct from the cytosolic glucocorticoid receptor. Affinity labelling experiments with [3H]dexamethasone 21-mesylate revealed two specifically labelled peptides, one at approx. 66 kDa and a doublet at 45 kDa. The 66 kDa peptide had been previously identified in serum and may be present as a result of serum contamination of the microsomal preparation. The 45 kDa doublet, on the other hand, had been shown to be absent from rat serum. The characteristics of the 45 kDa peptide(s) were identical to those of the dexamethasone binding site identified in the binding studies. [3H]Dexamethasone binding characteristics and affinity labelling of microsomal subfractions, separated by isopycnic centrifugation, showed that the binding sites are located in the endoplasmic reticulum. The identification and role of the 45 kDa peptide doublet remain to be determined.  相似文献   

6.
Binding studies with [3H]dexamethasone identified two binding sites on plasma membranes prepared from the male rat liver, a low-capacity site with a KD of 7.0 nM and a higher-capacity site with a KD of 90.1 nM. Both sites exhibited glucocorticoid responsiveness and specificity for glucocorticoids and progestins. Triamcinolone acetonide, which competes well for the binding of dexamethasone to the cytosolic glucocorticoid receptor, did not compete well for the binding of [3H]dexamethasone to the plasma-membrane binding sites. The binding sites were sensitive to protease and neuraminidase treatment, and resistant to extraction with NaCl, but were extracted with the detergent Triton X-100. As these experiments indicated the presence of plasma-membrane protein components which bind glucocorticoids at physiological concentrations, affinity-labelling experiments with dexamethasone mesylate were conducted. Two peptides were specifically labelled, one at approx. Mr 66,000 and one at Mr 45,000. The Mr-66,000 peptide was not sensitive to glucocorticoids, and was extracted by NaCl, and so did not correspond to either of the sites identified in the dexamethasone-binding studies. The Mr-45,000 entity, on the other hand, resembled the dexamethasone-binding sites in its response to glucocorticoid manipulation of the animal and in its resistance to salt extraction. This peptide was not present in rat serum. Thus we have identified a plasma-membrane peptide which binds dexamethasone. Whether this peptide is involved in transport of the glucocorticoid across the plasma membrane remains to be determined.  相似文献   

7.
The synthetic radiolabelled androgen mibolerone (7 alpha, 17 alpha-dimethyl-19-nortestosterone) was used to characterize androgen receptor binding in the seminiferous tubules from Cynomolgus monkey testis. Mibolerone binding was of high affinity (Kd = 0.6-5.4 nM) and limited capacity (37-50 fmol/mg protein), and was androgen specific. Sucrose density gradient centrifugation using a vertical tube rotor permitted the identification of a 9S molybdate-stabilized receptor under low salt conditions. The receptor bound to DEAE-cellulose. Methyltrienolone, but not mibolerone, also bound to a low affinity high capacity binding site in tubule cytosol, which probably represents glucocorticoid receptor binding, since it could be displaced by excess dexamethasone. However, occupancy of this low-affinity binding site by dexamethasone in an androgen receptor assay with [3H]methyltrienolone lead to a 33% underestimation of receptor binding, which appeared to relate to radioactive decomposition. Mibolerone, as well as methyltrienolone, bound to a progestin-binding protein in seminiferous tubule cytosol. These studies provide methods for the study of seminiferous tubule androgen receptors in subhuman primates and indicate that, due to its greater stability and lack of binding to glucocorticoid receptor, mibolerone is a useful new ligand in the study of androgen receptors in testis and its constituent cells.  相似文献   

8.
A new affinity matrix for mineralocorticoid receptors   总被引:2,自引:0,他引:2  
The behavior of mineralocorticoid and glucocorticoid receptors of rabbit kidney cytosol was investigated on two affinity gels: a new affinity matrix prepared with a 3-O-derivative of carboxymethyloxime deoxycorticosterone (deoxycorticosterone gel) and a gel linked to a 17 beta-dexamethasone derivative (dexamethasone gel). Deoxycorticosterone gel was highly specific, since it retained mineralocorticoid but not glucocorticoid receptors, and dexamethasone gel exhibited high selectivity for glucocorticoid receptors since it did not bind mineralocorticoid receptors. The use of these two matrices allowed separation of mineralocorticoid and glucocorticoid receptors and further characterization of each type of cytosolic receptors after its isolation. Cytosolic mineralocorticoid and glucocorticoid receptors stabilized by tungstate were found to have a Stokes radius of approximately 6 nm, as determined by high performance size exclusion chromatography and a sedimentation coefficient of approximately 9 S, determined on a glycerol density gradient containing tungstate, under either high or low salt conditions. The hydrodynamic parameters, binding characteristics, and specificity of mineralocorticoid receptors were the same in the untreated and dexamethasone gel-treated cytosol. Similarly glucocorticoid receptor characteristics remained unchanged after deoxycorticosterone gel treatment, indicating biochemical independence of cytosolic mineralocorticoid and glucocorticoid receptors. The [3H]aldosterone receptor complex eluted from deoxycorticosterone gel was recovered with a 30-40% yield and a purification factor of about 1000. Purified mineralocorticoid receptors had the same sedimentation coefficient as cytosolic mineralocorticoid receptors (9 S) but a different Stokes radius (4 versus 6 nm). The decrease in the Stokes radius of the purified mineralocorticoid receptors was probably due to the gel filtration method. These results indicate that the newly synthesized matrix specific for mineralocorticoid receptors constitutes a powerful tool for their extensive purification.  相似文献   

9.
The effect of aflatoxin B1 on the binding capacity of rat liver cytoplasmic glucocorticoid receptors and the nuclear binding of the activated receptor complex was investigated. No alterations in the kinetics of [3H]desamethasone-cytosol receptor complex formation were noted 2 h after treatment with 1 mg/kg aflatoxin B1. However, a 33% decrease in the concentration of nuclear acceptor sites and a 24% decrease in the glucocorticoid receptor-nuclear binding equilibrium constant of dissociation was observed. This response was near maximal at 2 h and persisted for at least 26 h. Inhibition of nuclear binding capacity was directly related to aflatoxin B1 dose, with a correlation coefficient of 0.99. Actinomycin D treatment (0.1 mg/kg) resulted in a slight reduction (16%) in the concentration of nuclear acceptor sites but had no effect on the nuclear binding dissociation constant. Administration of [3H]dexamethasone to alfatoxin B1 -treated rats produced a similar pattern of glucocorticoid binding distribution in vivo to that observed in vitro. No differences in [3H]dexamethasone-cytoplasmic receptor binding between control and alfatoxin B1 -treated rats were found, whereas nuclear [3H]dexanthasone binding was reduced 34% by alfatoxin B1 -treatment.  相似文献   

10.
To investigate the possible use of electrophilic affinity labelling for the characterization of glucocorticoid receptors, different chemically reactive derivatives of deoxycorticosterone (deoxycorticosterone 21-mesylate and deoxycorticosterone 21-(1-imidazole) carboxylate), dexamethasone (dexamethasone 21-mesylate, dexamethasone 21-iodoacetate and dexamethasone 21-bromoacetate) and progesterone (21-chloro progesterone) were tested for their ability to bind irreversibly to the glucocorticoid receptor from goat lactating mammary gland. Using partially purified receptor, only one of the steroids tested, dexamethasone 21-mesylate (DXM-M) was found more effective than dexamethasone (DXM) in preventing exchange of radioactive dexamethasone in the receptor binding site. The affinity of DXM-M for the glucocorticoid receptor, measured by competitive binding assay, was 1/15 that of DXM. Polyacrylamide gel electrophoresis in sodium dodecyl sulphate of the [3H]-DXM-M labeled glucocorticoid receptor revealed a specific covalently radiolabeled fraction corresponding to an apparent molecular weight of 75,000 to 80,000. The biological activity of DXM-M was studied in RPMI 3460-clone 6 Syrian hamster melanoma cells, a cell line which is sensitive to growth inhibition by glucocorticoids. Like DXM, DXM-M inhibits the growth of RPMI 3460-clone 6 cells and it acts as a slowly reversible glucocorticoid agonist at concentrations which correlate with the affinity of DXM-M for the glucocorticoid receptor in vitro.  相似文献   

11.
Glucocorticoids were shown to induce a time- and dose-dependent increment of specific [125I]VIP-binding on human mononuclear leucocytes in culture. Cortisol (0.5 microM) increased specific [125I]VIP-binding to 132% of control after 48 h preincubation, to 162% after 96 h, and to 175% after 144 h. Dexamethasone (0.5 microM) increased specific [125I]VIP-binding to 140%, 194% and 210% after the same time periods. Analysis of the binding data revealed an increase in Bmax to 119% by cortisol (0.5 microM, 48 h) and to 194% by dexamethasone (0.5 microM, 48 h), and no change in Kd for the high affinity receptor after preincubation. The number of low affinity binding sites for VIP was also increased by glucocorticoids. However, in contrast to the high affinity receptor, low affinity binding sites were initially downregulated in culture, and glucocorticoids induced a restitution to number and affinity close to those obtained for freshly isolated leucocytes. This increase in low affinity binding sites was blocked by actinomycin D, in contrast to the high affinity receptor upregulation which was independent of de novo protein synthesis. Furthermore, corresponding to the glucocorticoid induced high affinity receptor upregulation, an increase in VIP stimulated cyclic AMP production was observed. The results of this study suggest that leucocyte responsiveness to VIP can be influenced by glucocorticoids.  相似文献   

12.
The specificity of dexamethasone binding sites on nuclear envelopes (NE) and plasma membranes (PM) was determined in competition studies with natural and synthetic steroids. The binding affinities for nuclear envelopes and plasma membranes were then correlated with the three-dimensional structures of the ligands. Three major factors are implicated in the ability of the steroid to bind to the membrane sites: (1) the separation between the terminal oxygen atoms substituted at atoms C3 and C17, or attached to the substituent at C17, is found to be longer than 10 A for the medium and high affinity steroids; (2) the beta-orientation of the oxygen atom in the C17-substituent to the D-ring is favored over alpha-orientation; and (3) bulky substituents and nontypical configurations are not accepted by the binding sites. A nearly linear correlation between the O3...O (substituted at C17) distance and the binding affinity of the tested steroids is observed; explanations for the lack of linear correlation of some steroids are given. A preliminary model for the interaction of steroids with these membrane sites is proposed which requires two hydrogen bonding regions that interact with the 2 oxygen atoms and some steric restriction sites that prevent the binding of steroids with large substituents. The hydrophobicities of the steroids do not correlate with binding affinities to the dexamethasone binding sites; hydrophobicity seems to play a minor role in these steroid-membrane interactions. Comparisons of the specificity of the dexamethasone binding sites on membranes to the specificity of various steroid receptors are also presented.  相似文献   

13.
When small intestinal epithelial cells are incubated with [(3)H]corticosterone, nuclear binding is displaced neither by aldosterone nor RU-28362, suggesting that [(3)H]corticosterone is binding to a site distinct from mineralocorticoid receptor and glucocorticoid receptor. Saturation and Scatchard analysis of nuclear [(3)H]corticosterone binding demonstrate a single saturable binding site with a relatively low affinity (49 nM) and high capacity (5 fmol/microg DNA). Competitive binding assays indicate that this site has a unique steroid binding specificity, which distinguishes it from other steroid receptors. Steroid specificity of nuclear binding mirrors inhibition of the low 11beta-dehydrogenase activity, suggesting that binding may be to an 11beta-hydroxysteroid dehydrogenase (11betaHSD) isoform, although 11betaHSD1 is not present in small intestinal epithelia and 11betaHSD2 does not colocalize intracellularly with the binding site. In summary, a nuclear [(3)H]corticosterone binding site is present in small intestinal epithelia that is distinct from other steroid receptors and shares steroid specificity characteristics with 11betaHSD2 but is distinguishable from the latter by its distinct intracellular localization.  相似文献   

14.
The effects of steroids on the binding of [1,2-3H]dexamethasone and [1,2-3H]progesterone to the glucocorticoid receptor of rat thymus cytosol were studied. Although both glucocorticoid agonists and antagonists competed with [1,2-3H]dexamethasone for binding to the receptor under equilibrium conditions, only glucocorticoid antagonists of partial agonists, at micromolar concentrations, were capable of accelerating the rate of dissociation of previously bound [1,2-3H]dexamethasone from the receptor. Antagonists or partial agonists also enhanced the rate of dissociation of [1,2-3H]progesterone from the glucocorticoid receptor, with identical specificity and concentration--response characteristics. These effects are attributed to the presence on the receptor of a secondary, low-affinity, binding site for glucocorticoid antagonists, the occupancy of which produces negatively co-operative interactions with the primary glucocorticoid-binding site. In contrast with the interactions with the primary site, the interactions of steroids with the negatively co-operative site appear to be primarily hydrophobic in nature, and the site resembles the steroid-binding site of progestin-binding proteins in its specificity, though not its affinity. The results also suggest that the initial interactions of both glucocorticoid agonists and antagonists with the receptor under equilibrium conditions are with one primary site on a receptor existing in one conformation only.  相似文献   

15.
The biological potencies of four antiglucocorticoids, RU486 (RU), dexamethasone-oxetanone (DOX), R5020, and progesterone have been studied with respect to dexamethasone induction of tyrosine aminotransferase (TAT) in rat hepatoma tissue culture (HTC) cells. Their inhibitory effects in whole-cell competition binding studies (at 37 degrees C) and in TAT induction studies were analyzed by Dixon plots and Schild plots, respectively. We show that: In both cases, there is an actual competition of each antiglucocorticoid with the agonist dexamethasone for the same binding site; the two Kd values derived from the two plots are almost identical for each antiglucocorticoid; RU486 can be distinguished from the three other antiglucocorticoids by its high biological efficacy and its high affinity for the glucocorticoid receptor in whole cells at 37 degrees C (identical to its affinity in cytosol at 0 degree C). These results imply that: There is a linear correlation between the antagonist efficacies of antiglucocorticoids and their affinities for the glucocorticoid receptor in whole cells at 37 degrees C; the antagonistic action is solely mediated by competition with the agonist for the receptor binding site; this is verified by the fact that in all cases, in the presence or absence of antiglucocorticoids, a specific TAT induction level was always related to the same level of receptor saturation by the agonist in whole cells; the phenomena responsible for the high antagonist efficacy of RU486 are also responsible for its high affinity in whole cells at 37 degrees C.  相似文献   

16.
Scatchard analysis of binding of 125I-basic fibroblast growth factor (FGF) to baby hamster kidney (BHK) cells revealed the presence of two binding sites: a high affinity site with KD of 20 pM and 80,000 sites per cell and a low affinity site with KD of about 2 nM and 600,000 sites per cell. The binding to the two sites could be separated by first washing the cells with 2 M NaCl at pH 7.5 which released the low affinity binding and then extracting the cells with 0.5% Triton X-100 to recover the 125I-basic FGF bound to high affinity sites. The binding to the high affinity site was acid sensitive, suggesting that it represented binding to the receptor. Binding to the low affinity site could be competed strongly by heparin and less strongly by heparan sulfate but not by chondroitin sulfate, dermatan sulfate, or keratan sulfate. Treatment of BHK cells with heparinase abolished 62% of the low affinity binding, suggesting that the low affinity binding represented binding to cell-associated, heparin-like molecules. A variety of other cell types, including bovine capillary endothelial (BCE) cells, also demonstrated both low and high affinity binding sites. To test whether the low affinity binding might play a role in the basic FGF stimulation of plasminogen activator (PA) production by BCE cells, heparin was added to BCE cultures at concentrations which totally blocked binding of 125I-basic FGF to the low affinity sites. Addition of the heparin did not diminish the increased PA production induced by basic FGF. This suggests that the low affinity binding has no direct role in the stimulation of PA production in BCE cells.  相似文献   

17.
The effect of aflatoxin B1 on the binding capacity of rat liver cytoplasmic glucocorticoid receptors and the nuclear binding of the activated receptor complex was investigated. No alterations in the kinetics of [3H]dexamethasonccytosol receptor complex formation were noted 2 h after treatment with 1 mg/kg aflatoxin B1. However, a 33% decrease in the concentration of nuclear acceptor sites and a 24% decrease in the glucocorticoid receptor-nuclear binding equilibrium constant of dissociation was observed. This response was near maximal at 2 h and persisted for at least 36 h. Inhibition of nuclear binding capacity was directly related to aflatoxin B1 dose, with a correlation coefficient of 0.99. Actinomycin D treatment (0.1 mg/kg) resulted in a slight reduction (16%) in the concentration of nuclear acceptor sites but had no effect on the nuclear binding dissociation constant.Administration of [3H]dexamethasone to aflatoxin B1-treated rats produced a similar pattern of glucocortocoid binding distribution in vivo to that observed in vitro. No differences in [3H]dexamethasone-cytoplasmic receptor binding between control and aflatoxin B1-treated rats were found, whereas nuclear [3H]dexamethasone binding was reduced 34% by aflatoxin B1 treatment.  相似文献   

18.
The effect of cell density on the regulation of growth hormone (GH) receptors was studied by measuring specific binding of [125I]hGH to primary cultured hepatocytes with or without dexamethasone, which induces GH receptors. In cell cultures without dexamethasone, the cell density did not affect the level of binding of labeled GH appreciably. On the other hand, in the presence of dexamethasone, which induced an increase in the level of GH receptors on the cells, GH-binding by cultured cells at low cell density (3.3 x 10(4) cells/cm2) was about one-third of that of cells at high cell density (10(5) cells/cm2). Scatchard plot analysis showed that the cell-density dependent change in induction of GH binding, by dexamethasone was due to change in the number of binding sites without significant change in their affinity. The binding capacity of glucocorticoid receptors, measured as specific binding of [3H]dexamethasone to the hepatocytes, was not significantly affected by cell density. These results suggest that cell density modulates GH receptor induction by dexamethasone via events after glucocorticoid receptor binding.  相似文献   

19.
Abstract

The binding characteristics of radiolabeled N6-(cyclohexyl)adenosine ([3H]CHA), N6-(R-phenylisopropyl)adenosine ([3H]R-PIA), 5′-N-ethylcarboxamidoadenosine ([3H]NECA), and 2-[4-(2-carboxyethyl)phenyl]ethyl-amino-5′-N-ethylcarboxamidoadenosine ([3H]CGS 21680), to rat testis membranes were investigated. Specific binding of [3H]CGS 21680, a selective agonist for the A2a adenosine receptor, was very modest whilst the nonselective agonist [3H]NECA bound to rat testis membranes showing high binding capacity. At least two types of binding sites for [3H]NECA could be identified in rat testis membranes: high affinity sites and high capacity sites. Selective agonists for the At adenosine receptor, [3H]CHA and [3H]R-PIA bound with high affinity to a single class of binding sites. This high affinity binding site showed the typical pharmacological specificity of the A1 adenosine receptor with a potency order for agonists of CHA R-PIA > NECA > N6-(S-phenylisopropyl)adenosine (S-PIA). In order to detect the presence of the A3 adenosine receptor in these membranes we selectively blocked the A1 receptor with a large molar excess of a xanthine antagonist, either 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) or xanthine amine congener (XAC). In the presence of an antagonist a low affinity binding site for [3H]CHA and [3H]R-PIA was detected. This low affinity binding site showed a different pharmacological specificity than the high affinity binding site. In fact the potency order for agonists was CHA NECA = R-PIA > S-PIA. This finding suggests that the low affinity binding site represents the A3 adenosine receptor.  相似文献   

20.
A receptor for aldosterone was studied in the cytosol of rectal mucosa of two sisters (M.A., M.B.) with the clinical manifestations of pseudohypoaldosteronism (PHA). Compared to age matched controls the patients showed a decreased affinity for aldosterone (M.A. Kd1: 0.18 nM, Kd2: 4.55 nM; Nmax1: 0.185 fmol/mg cytosol protein (CP), Nmax2: 3.12 fmol/mg CP, respectively). In an attempt to find an explanation for the phenomenon of stress-induced electrolyte imbalance in PHA patients an experimental set up was designed, using aldosterone antibody material as artificial aldosterone receptor. Specific binding was evaluated in addition with and without a 25-100-fold molar excess of dexamethasone (DEX) in order to overcome the glucocorticoid affinity of the aldosterone receptor, a phenomenon proposed to be the cause for the severe consequences of stress in some patients with PHA. The aldosterone antiserum showed two binding sites, similar to the natural receptor (Kd1: 0.15 nM, Kd2: 1.30 nM; Nmax: 30 fmol/mg CP and 130 fmol/mg CP, respectively). Under the influence of DEX the high affinity binding site (Kd1) was occupied by the glucocorticoidanalogon (Kd: 1.30 nM; Nmax: 125 fmol/mg CP). In conclusion, in stress situations, with increased quantities of glucocorticoid circulating, the high affinity binding site of the aldosterone receptor might be occupied by the glucocorticoids, while the low affinity binding site in PHA patients might not have sufficient binding capacity to maintain the electrolyte balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号