首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte-like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF-derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real-time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20–30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte-specific markers observed in the cells cultured in a BMP15-supplemented medium. FF-derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.  相似文献   

2.
3.
4.
Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells.  相似文献   

5.
Neuronal tracing is a modern technology that is based on the expression of fluorescent proteins under the control of cell type–specific promoters. However, random genomic integration of the reporter construct often leads to incorrect spatial and temporal expression of the marker protein. Targeted integration (or knock-in) of the reporter coding sequence is supposed to provide better expression control by exploiting endogenous regulatory elements. Here we describe the generation of two fluorescent reporter systems: enhanced green fluorescent protein (EGFP) under pan-neural marker class III β-tubulin (Tubb3) promoter and mEos2 under serotonergic neuron-specific tryptophan hydroxylase 2 (Tph2) promoter. Differentiation of Tubb3-EGFP embryonic stem (ES) cells into neurons revealed that though Tubb3-positive cells express EGFP, its expression level is not sufficient for the neuronal tracing by routine fluorescent microscopy. Similarly, the expression levels of mEos2-TPH2 in differentiated ES cells was very low and could be detected only on messenger RNA level using polymerase chain reaction-based methods. Our data shows that the use of endogenous regulatory elements to control transgene expression is not always beneficial compared with the random genomic integration.  相似文献   

6.
7.
Stra 8基因的激活与精原干细胞的特异性分化研究   总被引:2,自引:0,他引:2  
视黄酸对维持正常的雄性睾丸结构和功能起着重要的作用。近来的研究发现,在雄性生殖腺发育过程中有一组基因,它们可以被视黄酸特异性的诱导活化,称为Stra(Stimulated by Retinoic Acid)基因。从鼠源分离得到的Stra8基因编码一种细胞质蛋白,该基因只特异性的在成熟雄性生殖细胞中表达,其功能被认为与精子形成有关。为研究Stra8基因的表达特性,我们从小鼠的基因组中克隆了Stra8基因的启动子序列(1.4kb)。将Stra8基因的1.4kb启动子序列克隆到pEGFP-1载体的EGFP基因之前,构建成由Stra8基因1.4kb启动子序列调控表达绿色荧光蛋白的pStra8-EGFP载体。将其分别转化到不同类型的细胞中,如小鼠ES-129细胞、人胎儿胰腺干细胞、小鼠骨髓间充质干细胞和小鼠精原干细胞等,通过荧光显微镜观察发现,绿色荧光蛋白只在小鼠精原干细胞中表达,表明Stra8基因是组织特异性表达的基因。将pStra8-EGFP转化小鼠骨髓间充质干细胞,经G418筛选2周后,用视黄酸诱导,12h培养后,有一部分转化pStra8-EGFP载体的细胞表达绿色荧光蛋白。RT-PCR证明这些细胞中有精原干细胞特异表达基因Stra8的转录,还有生殖细胞特异表达基因CyclinA8和Oct4的转录,这些结果说明小鼠骨髓间充质细胞经视黄酸的诱导可以向生殖细胞方向分化。  相似文献   

8.
为了研究骨形态发生蛋白15(bmp15)基因的表达和调控特性,通过克隆猪bmp15基因2.2 kb启动子片段,构建pBMP15-EGFP报告载体,实现监测干细胞向类卵母细胞分化的过程。以猪卵巢组织和中国仓鼠卵巢细胞(CHO)、成肌细胞(C2C12)、猪羊水干细胞(pAFSC)为材料,通过RT-PCR、免疫荧光、细胞转染、显微注射检测bmp15组织特异性表达,并且通过单层细胞诱导检测该基因体外示踪类卵母细胞获得过程的能力。RT-PCR结果显示bmp15在猪的卵巢组织中特异表达,在CHO中表达,而在C2C12和pAFSC中不表达。卵巢组织切片免疫荧光检测结果显示bmp15表达于卵泡发育的各个阶段。瞬时转染不同细胞发现启动子只在CHO中有活性,而在C2C12和pAFSC中均无活性。显微注射重组质粒片段结果显示增强绿色荧光蛋白(Enhanced Green Fluorecence Protein,EGFP)在卵母细胞体外成熟18 h启动表达,并能够持续至4-细胞期胚胎。单层细胞诱导结果显示诱导12 d的pAFSC出现携带EGFP的圆形细胞团。说明bmp15具有表达特异性和示踪干细胞诱导分化为类卵母细胞的潜能。  相似文献   

9.
用增强绿色荧光蛋白特异性标记小鼠 3T3 L1前脂肪细胞系 .构建paP2 promoter EGFP载体 ,电穿孔转染小鼠 3T3 L1前脂肪细胞 ,显微荧光观察和RT PCR确认aP2基因的内源表达 .EGFP基因转入 3T3 L1前脂肪细胞 ,观察到细胞分化过程中EGFP表达和脂肪积累 .RT PCR分析表明 ,EGFP代表了稳定而真实的aP2基因的内源性表达 .建立了由脂肪组织特异表达基因aP2的表达控制的EGFP标记的小鼠 3T3 L1前脂肪细胞系 ,目前尚未见用同样方法对前脂肪细胞进行特异性标记 .该细胞系将为脂肪细胞分化机理研究以及为抗肥胖症和抗糖尿病药物筛选提供有力工具 .  相似文献   

10.
The aims of this study were (i) to determine whether NSCs (neural stem cells) could be isolated from the brain of porcine fetuses at intermediate and late gestational age and (ii) to determine if these stem cells could be differentiated in vitro into osteogenic and neurogenic lineages following transfection with a reporter gene, EGFP (enhanced green fluorescence protein). The NSCs were isolated from the brains of porcine fetuses at intermediate and late gestational age and transfected with EGFP gene using lipofection. The transfected NSCs cells were induced to differentiate into cells of osteogenic and neurogenic lineages. Markers associated with NSCs and their osteogenic and neurogenic derivatives were tested by PCR. The results demonstrated that NSCs could be isolated from the brain of porcine fetus at intermediate and late gestational age and that transfected NSCs expressed EGFP and could be induced to differentiate in vitro. NSCs expressed CD‐90, Hes1, Oct4, Sox2 and Nestin, while following differentiation cells expressed markers for osteogenic (osteocalcin and osteonectin) and neurogenic cells such as astrocyte [GFAP (glial fibrillary acidic protein)], oligodendrocyte [GALC (galactosylceramide)] and neuron [NF (neurofilament), ENO2 (enolase 2) and MAP (microtubule‐associated protein)].  相似文献   

11.
Current treatments of large bone defects are based on autologous or allogenic bone transplantation. Human amniotic fluid stem cells (hAFSCs) were evaluated for their potential in bone regenerative medicine. In this study, hAFSCs were transduced with lentiviral vector harboring red fluorescent protein to investigate their role in the regeneration of critical-size bone defects in calvarial mouse model. To distinguish donor versus recipient cells, a transgenic mouse model carrying GFP fluorescent reporter was used as recipient to follow the fate of hAFSCs transplanted in vivo into Healos® scaffold. Our results showed that transduced hAFSCs can be tracked in vivo directly at the site of transplantation. The presence of GFP positive cells in the scaffold at 3 and 6 weeks after transplantation indicates that donor hAFSCs can recruit host cells during the repair process. These observations help clarify the role of hAFSCs in bone tissue repair.  相似文献   

12.
Bone morphogenetic protein (BMP)-2, a member of the BMP family, plays an important role in osteoblast differentiation and bone formation. To discover small molecules that induce BMP-2, a luciferase reporter vector containing the 5'-flanking promoter region of the human BMP-2 gene was constructed and transfected into human osteosarcoma (HOS) cells. By the screening of an in-house natural product library with stably transfected HOS cells, a fungal metabolite, compactin, known as an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, was isolated. The stimulation of the promoter activity by compactin seemed to be specific for BMP-2 gene in HOS cells, since it had little effect on BMP-4 or SV40 promoter activity and the stimulation was not observed in Chinese hamster ovary (CHO) cells. RT-PCR analysis and alkaline phosphatase assay revealed that compactin induced an increase in the expression of BMP-2 mRNA and protein. Like compactin, simvastatin also activated the BMP-2 promoter, whereas pravastatin did not. The statin-mediated activation of BMP-2 promoter was completely inhibited by the downstream metabolite of HMG-CoA reductase, mevalonate, indicating that the activation was a result of the inhibition of the enzyme. These results suggest that statins, if they are selectively targeted to bone, have beneficial effects in the treatment of osteoporosis or bone fracture.  相似文献   

13.
14.
Corneal epithelium maintains visual acuity and is regenerated by the proliferation and differentiation of limbal progenitor cells. Transplantation of human limbal progenitor cells could restore the integrity and functionality of the corneal surface in patients with limbal stem cell deficiency. However, multiple protocols are employed to differentiate human induced pluripotent stem (iPS) cells into corneal epithelium or limbal progenitor cells. The aim of this study was to optimize a protocol that uses bone morphogenetic protein 4 (BMP4) and limbal cell-specific medium. Human dermal fibroblast-derived iPS cells were differentiated into limbal progenitor cells using limbal cell-specific (PI) medium and varying doses (1, 10, and 50 ng/mL) and durations (1, 3, and 10 days) of BMP4 treatment. Differentiated human iPS cells were analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemical studies at 2 or 4 weeks after BMP4 treatment. Culturing human dermal fibroblast-derived iPS cells in limbal cell-specific medium and BMP4 gave rise to limbal progenitor and corneal epithelial-like cells. The optimal protocol of 10 ng/mL and three days of BMP4 treatment elicited significantly higher limbal progenitor marker (ABCG2, ∆Np63α) expression and less corneal epithelial cell marker (CK3, CK12) expression than the other combinations of BMP4 dose and duration. In conclusion, this study identified a successful reprogramming strategy to induce limbal progenitor cells from human iPS cells using limbal cell-specific medium and BMP4. Additionally, our experiments indicate that the optimal BMP4 dose and duration favor limbal progenitor cell differentiation over corneal epithelial cells and maintain the phenotype of limbal stem cells. These findings contribute to the development of therapies for limbal stem cell deficiency disorders.  相似文献   

15.
Osteoblasts and adipocytes originate from common mesenchymal progenitor cells and although a number of compounds can induce osteoblastic and adipogenic differentiation from progenitor cells, the underlying mechanisms have not been elucidated. The present study examined the synergistic effects of dexamethasone (Dex) and bone morphogenetic protein (BMP)‐2 on the differentiation of clonal mesenchymal progenitor cells isolated from rat calvaria into osteoblasts and adipocytes, as well as the effects of the timing of treatment. Cells were cultured for various periods of time in the presence of Dex and/or BMP‐2. When cells were treated with Dex + BMP‐2 during the early phase of differentiation, they differentiated into adipocytes. However, when cells were treated with Dex + BMP‐2 during the late phase of differentiation, a synergistic effect on in vitro matrix mineralization was observed. To examine differences between the early and late phases of differentiation, ALP activity was measured in the presence of BMP‐2. ALP activity increased markedly on Day 9, corresponding to the onset of the synergistic effect of Dex. Dex treatment inhibited osterix (OSX) expression in cells committed to adipogenic differentiation, but not in cells committed to osteogenic differentiation following BMP‐2 treatment. The isoform2 OSX promoter region was found to be involved in the effects of Dex on cells during the early phase of differentiation. Furthermore, cells stably expressing OSX (isoform2) formed mineralized nodules even though they had been treated with Dex + BMP‐2 during the early phase of differentiation. It appears that Dex modulates osteogenesis and adipogenesis in mesenchymal stem cells by regulating OSX expression. J. Cell. Physiol. 226: 739–748, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The successful integration of stem cells after their implantation into the brain has become a central issue in modern neuroscience. In this study, we test the neural differentiation potential of c-Kit+/Oct-4+ human amniotic fluid stem cells (hAFSCs) in vitro and their survival and integration in vivo. hAFSCs were induced towards neural differentiation and specific markers (GFAP, β-III tubulin, CNPase, MAP2, NeuN, synapsines, S100, PMP22) were detected by immunofluorescence and Western blot analysis. Glial proteins were expressed as early as 2 weeks after the initial differentiation stimulus, whereas neuronal markers started to appear from the third week of differentiation under culturing conditions of high cell density. This timeline suggested that glial cells possessed a promoting role in the differentiation of hAFSCs towards a neuronal fate. hAFSCs were then implanted into the lateral ventricle of the brain of 1-day-old rats, since neuronal development occurs up to 1 month after birth in this animal model. Our data showed that hAFSCs survived for up to 6 weeks post-implantation, were integrated into various areas of the central nervous system and migrated away from the graft giving rise to mature neurons and oligodendrocytes. We conclude that hAFSCs are able to differentiate and integrate into nervous tissue during development in vivo.  相似文献   

17.
干细胞通过诱导培养,在体外能够分化为卵母细胞样细胞 (Oocyte-like cell, OLC),将其置于体内环境能够有效地改善OLC的质量和发育能力。通过检测猪卵泡液中激素和Bmp 15蛋白的含量,选取了中等卵泡的卵泡液对人羊水干细胞进行体外诱导培养,10 d后,经实时定量PCR检测发现,早期生殖细胞样细胞团高表达生殖基因oct4和重新甲基化转移酶基因dnmt3b。将这些细胞团用猪卵泡膜包裹后形成移植物,移植到小鼠肾被膜下。1个月后取出移植物,发现移植物内的细胞在形态上,不仅与正常的卵母细胞极为相似,而且还表达生殖细胞和卵母细胞特异标记基因 (oct4、nanog、stella、ifitm3、dazl、nanos3、bmp15和gdf9)。证明技术体系能够有效改善OLC的形成和发育能力。  相似文献   

18.
19.
Dyce PW  Liu J  Tayade C  Kidder GM  Betts DH  Li J 《PloS one》2011,6(5):e20339
We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs). Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP(+). After differentiation, some GFP(+) OLCs reached 40-45 μM and expressed oocyte markers. Flow cytometric analysis revealed that ~ 0.3% of the freshly isolated skin cells were GFP(+). The GFP-positive cells increased to ~ 7% after differentiation, suggesting that the GFP(+) cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP(+) oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis.  相似文献   

20.
目的构建肺泡表面活性蛋白C(SPC)及增强型绿色荧光蛋白(EGFP)共表达载体pcDNA3.1/SPC/EGFP,探讨其在体外跟踪人羊水间充质干细胞(AF-MSCs)定向分化为II型肺泡上皮细胞(AECII)的作用。方法采用PCR和DNA重组技术构建pcDNA3.1/SPC/EGFP表达载体,脂质体转染至AF-MSCs,G418稳定筛选;将AF-MSCs分为阴性对照组、未转染组和转染组,各组体外诱导培养后荧光显微镜观察SPC启动子调控下游EGFP基因表达活性,RT-PCR检测SPA和SPC mRNA表达水平,Western blot检测SPA和SPC蛋白表达以及电镜观察嗜锇性板层小体。结果成功构建pcDNA3.1/SPC/EGFP表达载体,测序结果与SPC启动子及EGFP序列一致;AF-MSCs体外诱导分化后,在阴性对照组中未见绿色荧光细胞,SPA和SPC mRNA及蛋白均为阴性表达,且未发现嗜锇性板层小体;在未转染组中亦未见绿色荧光细胞,而SPA和SPC mRNA(相对表达量为0.072±0.004和0.087±0.012)及蛋白(相对表达量为0.051±0.008和0.063±0.009)均为阳性表达,并发现嗜锇性板层小体;在转染组中可见绿色荧光细胞,SPA和SPC mRNA(相对表达量为0.109±0.011和0.126±0.017)及蛋白(相对表达量为0.075±0.012和0.081±0.006)均为显著表达,与未转染组相比差异均有统计学意义(t值分别为-5.50、-3.16、-2.90和-2.85,均P0.05),亦可见嗜锇性板层小体。结论经pcDNA3.1/SPC/EGFP表达载体转染的AFMSCs在体外适当诱导下能定向分化为AECII,pcDNA3.1/SPC/EGFP表达载体可能成为跟踪AF-MSCs定向分化的工具,为肺组织再生的干细胞治疗提供研究基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号