首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Numerous studies reveal that phosphatidylinositol (PI) 3-kinase and Akt protein kinase are important mediators of cell survival. However, the survival-promoting mechanisms downstream of these enzymes remain uncharacterized. Glycogen synthase kinase-3 beta (GSK-3 beta), which is inhibited upon phosphorylation by Akt, was recently shown to function during cell death induced by PI 3-kinase inhibitors. In this study, we tested whether GSK-3 beta is critical for the death of sympathetic neurons caused by the withdrawal of their physiological survival factor, the nerve growth factor (NGF). Stimulation with NGF resulted in PI 3-kinase-dependent phosphorylation of GSK-3 beta and inhibition of its protein kinase activity, indicating that GSK-3 beta is targeted by PI 3-kinase/Akt in these neurons. Expression of the GSK-3 beta inhibitor Frat1, but not a mutant Frat1 protein that does not bind GSK-3 beta, rescued neurons from death caused by inhibiting PI 3-kinase. Similarly, expression of Frat1 or kinase-deficient GSK-3 beta reduced death caused by inhibiting Akt. In NGF-maintained neurons, overexpression of GSK-3 beta caused a small but significant decrease in survival. However, expression of neither Frat1, kinase-deficient GSK-3 beta, nor GSK-3-binding protein inhibited NGF withdrawal-induced death. Thus, although GSK-3 beta function is required for death caused by inactivation of PI 3-kinase and Akt, neuronal death caused by NGF withdrawal can proceed through GSK-3 beta-independent pathways.  相似文献   

4.
Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) act on various neurons of the CNS as neurotrophic factors promoting neuronal differentiation and survival. We examined the survival-promoting effects of BDNF and IGF-1 on serum deprivation-induced death in cultured cerebral cortical neurons, and compared the intracellular signaling pathways stimulated by BDNF and IGF-1 in the neurons. We found that the survival-promoting effect of BDNF was much weaker than that of IGF-1 in serum deprivation-induced death of cultured cortical neurons. We found no differences in the levels of phosphatidylinositol 3-kinase (PtdIns3-K) activity or Akt (also called PKB) phosphorylation induced by BDNF and IGF-1 in the cultured cortical neurons, although many reports suggest that PtdIns3-K and Akt are involved in survival promotion. In addition, phosphorylation signals of mitogen-activated protein kinase (MAPK) and cAMP responsive element-binding protein (CREB), which have also been reported to be involved in survival promotion, were stimulated by BDNF much more potently than by IGF-1. These results show that there may be, as yet unidentified, intracellular signaling pathways other than the PtdIns3-K-Akt, MAPK and CREB signaling, to regulate survival promotion. These unidentified signaling pathways may be responsible for the distinct strengths of the survival-promoting effects of BDNF and IGF-1.  相似文献   

5.
6.
7.
8.
Both neuroprotective and neurotoxic roles have previously been described for histone deacetylase-1 (HDAC1). Here we report that HDAC1 expression is elevated in vulnerable brain regions of two mouse models of neurodegeneration, the R6/2 model of Huntington disease and the Ca2+/calmodulin-dependent protein kinase (CaMK)/p25 double-transgenic model of tauopathic degeneration, suggesting a role in promoting neuronal death. Indeed, elevating HDAC1 expression by ectopic expression promotes the death of otherwise healthy cerebellar granule neurons and cortical neurons in culture. The neurotoxic effect of HDAC1 requires interaction and cooperation with HDAC3, which has previously been shown to selectively induce the death of neurons. HDAC1-HDAC3 interaction is greatly elevated under conditions of neurodegeneration both in vitro and in vivo. Furthermore, the knockdown of HDAC3 suppresses HDAC1-induced neurotoxicity, and the knockdown of HDAC1 suppresses HDAC3 neurotoxicity. As described previously for HDAC3, the neurotoxic effect of HDAC1 is inhibited by treatment with IGF-1, the expression of Akt, or the inhibition of glycogen synthase kinase 3β (GSK3β). In addition to HDAC3, HDAC1 has been shown to interact with histone deacetylase-related protein (HDRP), a truncated form of HDAC9, whose expression is down-regulated during neuronal death. In contrast to HDAC3, the interaction between HDRP and HDAC1 protects neurons from death, an effect involving acquisition of the deacetylase activity of HDAC1 by HDRP. We find that elevated HDRP inhibits HDAC1-HDAC3 interaction and prevents the neurotoxic effect of either of these two proteins. Together, our results suggest that HDAC1 is a molecular switch between neuronal survival and death. Its interaction with HDRP promotes neuronal survival, whereas interaction with HDAC3 results in neuronal death.  相似文献   

9.
Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone most intensively studied for its actions on insulin secreting β-cells. GLP-1 and its receptor are also found in brain and accumulating evidence indicates that GLP-1 has neuroprotective actions. Here, we investigated whether GLP-1 protects neuronal cells from death evoked by nerve growth factor (NGF) withdrawal. Compromised trophic factor signaling may underlie neurodegenerative diseases ranging from Alzheimer disease to diabetic neuropathies. We report that GLP-1 provides sustained protection of cultured neuronal PC12 cells and sympathetic neurons from degeneration and death caused by NGF deprivation. Past work shows that NGF deprivation induces the pro-apoptotic protein Bim which contributes to neuron death. Here, we find that GLP-1 suppresses Bim induction promoted by NGF deprivation. Thus, GLP-1 may protect neurons, at least in part, by suppressing Bim induction. Our findings support the idea that drugs that mimic or elevate GLP-1 represent potential therapeutics for neurodegenerative diseases.  相似文献   

10.
11.
12.
13.
Neurons that connect mechanosensory hair cell receptors to the central nervous system derive from the otic vesicle from where otic neuroblasts delaminate and form the cochleovestibular ganglion (CVG). Local signals interact to promote this process, which is autonomous and intrinsic to the otic vesicle. We have studied the expression and activity of insulin-like growth factor-1 (IGF-1) during the formation of the chick CVG, focusing attention on its role in neurogenesis. IGF-1 and its receptor (IGFR) were detected at the mRNA and protein levels in the otic epithelium and the CVG. The function of IGF-1 was explored in explants of otic vesicle by assessing the formation of the CVG in the presence of anti-IGF-1 antibodies or the receptor competitive antagonist JB1. Interference with IGF-1 activity inhibited CVG formation in growth factor-free media, revealing that endogenous IGF-1 activity is essential for ganglion generation. Analysis of cell proliferation cell death, and expression of the early neuronal antigens Tuj-1, Islet-1/2, and G4 indicated that IGF-1 was required for survival, proliferation, and differentiation of an actively expanding population of otic neuroblasts. IGF-1 blockade, however, did not affect NeuroD within the otic epithelium. Experiments carried out on isolated CVG showed that exogenous IGF-1 induced cell proliferation, neurite outgrowth, and G4 expression. These effects of IGF-1 were blocked by JB1. These findings suggest that IGF-1 is essential for neurogenesis by allowing the expansion of a transit-amplifying neuroblast population and its differentiation into postmitotic neurons. IGF-1 is one of the signals underlying autonomous development of the otic vesicle.  相似文献   

14.
Early neural cell death is programmed cell death occurring within proliferating and undifferentiated neural progenitors. Little is known about the regulation and role of early neural cell death. In Xenopus embryos, primary neurogenesis is disrupted following the inhibition of early neural cell death, indicating that it is required for normal primary neurogenesis. Here we show that early neural cell death is dependent on primary neurogenesis. Overexpression of XSoxD concomitantly reduced N-Tubulin expression and early neural cell death, as seen by reduced TUNEL staining in stage 15 embryos. Conversely, overexpression of XNgnr1 led to ectopic N-Tubulin expression and TUNEL staining. However, XNeuroD overexpression, which induces ectopic N-Tubulin expression downstream of XNgnr1, had no effect on early neural cell death. E1A12S differentially inhibits the differentiation pathway induced by XNGNR1 protein. E1A12S-mediated inhibition of XNGNR1 neurogenic activity resulted in the reduction of N-Tubulin expression and TUNEL staining. Taken together, our data establish that primary neurogenesis induced by XNGNR1 promotes early neural cell death. This indicates that XNgnr1 positively regulates early neural cell death. We propose that early neural cell death might eliminate cells with abnormally high levels of XNGNR1, which can result in pre-mature neuronal differentiation.  相似文献   

15.
Rai is a recently identified member of the family of Shc-like proteins, which are cytoplasmic signal transducers characterized by the unique PTB-CH1-SH2 modular organization. Rai expression is restricted to neuronal cells and regulates in vivo the number of postmitotic sympathetic neurons. We report here that Rai is not a common substrate of receptor tyrosine kinases under physiological conditions and that among the analyzed receptors (Ret, epidermal growth factor receptor, and TrkA) it is activated specifically by Ret. Overexpression of Rai in neuronal cell lines promoted survival by reducing apoptosis both under conditions of limited availability of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) and in the absence of Ret activation. Overexpressed Rai resulted in the potentiation of the Ret-dependent activation of phosphatidylinositol 3-kinase (PI3K) and Akt. Notably, increased Akt phosphorylation and PI3K activity were also found under basal conditions, e.g., in serum-starved neuronal cells. Phosphorylated and hypophosphorylated Rai proteins form a constitutive complex with the p85 subunit of PI3K: upon Ret triggering, the Rai-PI3K complex is recruited to the tyrosine-phosphorylated Ret receptor through the binding of the Rai PTB domain to tyrosine 1062 of Ret. In neurons treated with low concentrations of GDNF, the prosurvival effect of Rai depends on Rai phosphorylation and Ret activation. In the absence of Ret activation, the prosurvival effect of Rai is, instead, phosphorylation independent. Finally, we showed that overexpression of Rai, at variance with Shc, had no effects on the early peak of mitogen-activated protein kinase (MAPK) activation, whereas it increased its activation at later time points. Phosphorylated Rai, however, was not found in complexes with Grb2. We propose that Rai potentiates the MAPK and PI3K signaling pathways and regulates Ret-dependent and -independent survival signals.  相似文献   

16.
In the developing vertebrate retina, progenitor cells initially proliferate but begin to produce postmitotic neurons when neuronal differentiation occurs. However, the mechanism that determines whether retinal progenitor cells continue to proliferate or exit from the cell cycle and differentiate is largely unknown. Here, we report that histone deacetylase 1 (Hdac1) is required for the switch from proliferation to differentiation in the zebrafish retina. We isolated a zebrafish mutant, ascending and descending (add), in which retinal cells fail to differentiate into neurons and glial cells but instead continue to proliferate. The cloning of the add gene revealed that it encodes Hdac1. Furthermore, the ratio of the number of differentiating cells to that of proliferating cells increases in proportion to Hdac activity, suggesting that Hdac proteins regulate a crucial step of retinal neurogenesis in zebrafish. Canonical Wnt signaling promotes the proliferation of retinal cells in zebrafish, and Notch signaling inhibits neuronal differentiation through the activation of a neurogenic inhibitor, Hairy/Enhancer-of-split (Hes). We found that both the Wnt and Notch/Hes pathways are activated in the add mutant retina. The cell-cycle progression and the upregulation of Hes expression in the add mutant retina can be inhibited by the blockade of Wnt and Notch signaling, respectively. These data suggest that Hdac1 antagonizes these pathways to promote cell-cycle exit and the subsequent neurogenesis in zebrafish retina. Taken together, these data suggest that Hdac1 functions as a dual switch that suppresses both cell-cycle progression and inhibition of neurogenesis in the zebrafish retina.  相似文献   

17.
The Drosophila protein Groucho is involved in the regulation of cell-determination events during insect neurogenesis and segmentation. A group of mammalian proteins, referred to as transducin-like Enhancer of split (TLE) 1 through 4, share with Groucho identical structures and molecular properties. The aim was to determine whether individual TLE proteins participate in the regulation of cell determination in mammals like their Drosophila counterpart. It is here reported that TLE family members are expressed in combinatorial ways during the in vitro differentiation of mouse P19 embryonic carcinoma cells (a model for neural determination) and rat CFK2 cells (a model for chondrocytic determination). TLE1 is up-regulated and TLE2 and TLE4 are down-regulated to different extents during early stages of differentiation. In contrast, later stages correlate with up-regulation of TLE2 and TLE4, and decreased expression of TLE1. Individual TLE proteins are also expressed in combinatorial as well as complementary patterns during the development of the cerebral cortex and spinal cord of mouse embryos. In particular, TLE1 is robustly expressed in both neural progenitor cells and postmitotic neurons of the outer layers of the cortical plate, whereas TLE4 expression marks preferentially postmitotic neurons of the inner layers. Taken together, these results strongly suggest non-redundant roles for individual TLE proteins during both cell-determination and cell-differentiation events.  相似文献   

18.
The contribution of zinc-mediated neuronal death in the process of both acute and chronic neurodegeneration has been increasingly appreciated. Phosphatase and tensin homologue, deleted on chromosome 10 (PTEN), the major tumor suppressor and key regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, plays a critical role in neuronal death in response to various insults. NEDD4-1-mediated PTEN ubiquitination and subsequent degradation via the ubiquitin proteosomal system have recently been demonstrated to be the important regulatory mechanism for PTEN in several cancer types. We now demonstrate that PTEN is also the key mediator of the PI3K/Akt pathway in the neuronal response to zinc insult. We used primary cortical neurons and neuroblastoma N2a cells to show that zinc treatment results in a reduction of the PTEN protein level in parallel with increased NEDD4-1 gene/protein expression. The reduced PTEN level is associated with an activated PI3K pathway as determined by elevated phosphorylation of both Akt and GSK-3 as well as by the attenuating effect of a specific PI3K inhibitor (wortmannin). The reduction of PTEN can be attributed to increased protein degradation via the ubiquitin proteosomal system, as we show NEDD4-1 to be the major E3 ligase responsible for PTEN ubiquitination in neurons. Moreover, PTEN and NEDD4-1 appear to be able to counter-regulate each other to mediate the neuronal response to zinc. This reciprocal regulation requires the PI3K signaling pathway, suggesting a feedback loop mechanism. This study demonstrates that NEDD4-1-mediated PTEN ubiquitination is crucial in the regulation of PI3K/Akt signaling by PTEN during the neuronal response to zinc, which may represent a common mechanism in neurodegeneration.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) activates a variety of signaling molecules to exert various functions in the nervous system, including neuronal differentiation, survival, and regulation of synaptic plasticity. Previously, we have suggested that BIT/SHPS-1 (brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1) is a substrate of Shp-2 and is involved in BDNF signaling in cultured cerebral cortical neurons. To elucidate the biological function of BIT/SHPS-1 in cultured cerebral cortical neurons in connection with its role in BDNF signaling, we generated recombinant adenovirus vectors expressing the wild type of rat BIT/SHPS-1 and its 4F mutant in which all tyrosine residues in the cytoplasmic domain of BIT/SHPS-1 were replaced with phenylalanine. Overexpression of wild-type BIT/SHPS-1, but not the 4F mutant, in cultured cerebral cortical neurons induced tyrosine phosphorylation of BIT/SHPS-1 itself and an association of Shp-2 with BIT/SHPS-1 even without addition of BDNF. We found that BDNF-promoted survival of cultured cerebral cortical neurons was enhanced by expression of the wild type and also 4F mutant, indicating that this enhancement by BIT/SHPS-1 does not depend on its tyrosine phosphorylation. BDNF-induced activation of mitogen-activated protein kinase was not altered by the expression of these proteins. In contrast, BDNF-induced activation of Akt was enhanced in neurons expressing wild-type or 4F mutant BIT/SHPS-1. In addition, LY294002, a specific inhibitor of phosphatidylinositol 3-kinase, blocked the enhancement of BDNF-promoted neuronal survival in both neurons expressing wild-type and 4F mutant BIT/SHPS-1. These results indicate that BIT/SHPS-1 contributes to BDNF-promoted survival of cultured cerebral cortical neurons, and that its effect depends on the phosphatidylinositol 3-kinase-Akt pathway. Our results suggest that a novel action of BIT/SHPS-1 does not occur through tyrosine phosphorylation of BIT/SHPS-1 in cultured cerebral cortical neurons.  相似文献   

20.
The mechanisms of motor neuronal death in amyotrophic lateral sclerosis (ALS) remain to be unclear. Phosphatidy-linositol 3-kinase (PI3-K) and its main downstream effector, Akt/protein kinase B (PKB) have been shown to play a central role in neuronal survival against apoptosis supported by neurotrophic factors. In order to investigate a possible impairment of survival signaling, we examined expressions of PI3-K and Akt in the spinal cord of the transgenic mice overexpressing a mutant Cu/Zn superoxide dismutase (SOD1) gene, a valuable model for human ALS. Immunoblotting and immunohistochemical analyses showed that the majority of spinal motor neurons lost the immunoreactivities for both PI3-K and Akt in the early and presymptomatic stage that preceded significant loss of the neurons. The present results suggest that an early decrease of survival signal proteins in the spinal motor neurons may account for the subsequent motor neuronal loss in this animal model of ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号