首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为明确苦瓜的果实和种子的适宜采收时期,采用"翠中翠"苦瓜为研究对象,对苦瓜果实发育过程中的可溶性蛋白、总可溶性糖、维生素C的含量及种子生活力的变化进行动态监测。结果显示:(1)花后第14天至第26天,随着果实的迅速膨大,可溶性蛋白、总可溶性糖及维生素C含量也迅速增长;(2)种子干物质迅速积累,含水量迅速下降,种子生活力迅速提高,至花后第22天至第26天,种子生活力基本稳定。  相似文献   

2.
Growth, accumulation of sugars and starch, and the activity of enzymes involved in sucrose mobilization were determined throughout the development of sweet pepper fruits. Fruit development was roughly divided into three phases: (1) an initial phase with high relative growth rate and hexose accumulation, (2) a phase with declining growth rate and accumulation of sucrose and starch, and (3) a ripening phase with no further fresh weight increase and with accumulation of hexoses, while sucrose and starch were degraded. Acid and neutral invertase (EC 3.2.1.26) were closely correlated to relative growth rate until ripening and inversly correlated to the accumulation of sucrose. Acid invertase specifically increased during ripening, concurrently with the accumulation of hexoses. Sucrose synthase (EC 2.4.1.13) showed little correlation to fruit development, and in periods of rapid growth the activity of sucrose synthase was low compared to the invertases. However, during late fruit growth sucose synthase was more active than the invertases. We conclude that invertase activities determine the accumulation of assimilates in the very young fruits, and a reactivation of acid invertase is responsible for the accumulation of hexoses during ripening. During late fruit growth, before ripening, sucrose synthase is transiently responsible for the sucrose breakdown in the fruit tissue. Results also indicate that pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) and its activator fructose-2,6-bisphosphate (Fru2,6bisP) are involved in the regulation of the sink metabolism of the fruit tissue.  相似文献   

3.
Receptors for bitter and sweet taste   总被引:10,自引:0,他引:10  
The identification of two families of receptors, T1Rs and T2Rs, for sweet and bitter taste stimuli has opened the door to understanding some of the basic mechanisms underlying taste transduction in mammals. Studies of the functions of these receptors and their patterns of expression provide important information regarding the detection of structurally diverse taste compounds and the manner in which different taste qualities are encoded in the mouth.  相似文献   

4.
In sink tissues of cucurbits, including sweet melon fruits, the galactosyl-sucrose oligosaccharides, stachyose and raffinose, together with sucrose, are the major translocated carbohydrates. In the present study we investigated the carbohydrate metabolism of young melon ( Cucumis melo L. cv. C-8) fruit during the period of initial fruit set and development, from 3 days prior to anthesis until 20 days after anthesis (DAA), prior to the onset of sucrose accumulation. The enzymes assayed could be classified into two categories according to developmental patterns. Two of the enzymes, alkaline α -galactosidase I [EC 3.2.1.22], which hydrolyzes both raffinose and stachyose, and acid invertase [EC 3.2.1.26] either increased or remained stable during the first 10 DAA. The remaining measured enzymes (the stachyose-specific alkaline α -galactosidase form II, acid α -galactosidase, alkaline invertase, sucrose synthase [EC 2.4.1.13], galactokinase [EC 2.7.1.6], UDP-Gal PPase [EC 2.7.7.10], UDP-Glc-4 epimerase [EC 5.1.3.2], UDP-Glc PPase [EC 2.7.7.9], phosphoglucomutase [EC 5.4.2.2] and phosphoglucoisomerase [EC 5.3.1.9]) all showed a similar developmental pattern of steady decrease in activity following anthesis. We also compared the saccharide metabolism of pollinated and non-pollinated ovaries during the initial days following anthesis. In the absence of pollination, ovary growth dramatically decreased by the first DAA and was accompanied by a sharp decrease in the activity of UDP-Glc PPase. Other enzymes in the pathway, including the enzymes of stachyose and raffinose hydrolysis, did not decrease in activity until 2 or 4 DAA, after ovary growth was affected. These results provide information to assess the possible regulating enzymes in cucurbit ovary development and fruit set.  相似文献   

5.
6.
The food of sweet and bitter fancy   总被引:2,自引:0,他引:2  
The MAP30 ribosomal inactivating protein structure has been determined by NMR spectroscopy. This anti-HIV and anti-cancer protein is an RNA and DNA glycosylase as well as a DNA apurinic/apyrimidinic (AP) lyase.  相似文献   

7.
Abscisic acid plays a crucial role in the regulation of fruit development and ripening, however, its role in the floral development and the fruit set is still unclear. In the present study, the ABA accumulation and the expression patterns of genes related to ABA metabolism and signalling in sweet cherry were investigated. The results showed that ABA accumulation increased and peaked at stage V in ovary, at stage VI in stamen, and in young fruit it peaked at 7 days after full bloom. The expression pattern of ABA synthetase PaNCED1 was consistent with the changes of ABA accumulation. Among four ABA degradation enzymes PaCYP707As, PaCYP707A4 was highly expressed in ovary, PaCYP707A1 was mainly in stamen, and PaCYP707A2 was in young fruit, and their expressions were reversed to the trend of PaNCED1. With regard to ABA signalling genes, among three ABA receptors PaPYLs, PaPYL2 and PaPYL3 were high expression genes in ovary and in young fruit with similar expression patterns, while PaPYL3 was the high expression gene in stamen. Within six PaPP2Cs, PaPP2C1/2/3 were highly expressed in ovary and young fruit, while PaPP2C3/4 were mainly in stamen. The six PaSnRK2s showed different expression patterns: PaSnRK2.1/2.2/2.4 were highly expressed in ovary and young fruit, while PaSnRK2.1/2.3 were highly expressed in stamen. In situ hybridization results showed that PaPYL3, PaPP2C3 and PaSnRK2.4 were expressed in seed, pulp and fruit peel during fruit set. In conclusion, ABA and its signaling may play an important role in the regulation of floral development and fruit set.  相似文献   

8.
9.
The sweet and the bitter of mammalian taste   总被引:12,自引:0,他引:12  
The discovery of two families of mammalian taste receptors has provided important insights into taste recognition and taste perception. Recent studies have examined the receptors and signaling pathways that mediate sweet, bitter, and amino acid taste detection in mammals. These studies demonstrate that taste cells are selectively tuned to different taste modalities and clarify the logic of taste coding in the periphery.  相似文献   

10.
Depolymerization of cell wall xyloglucan has been proposed to be involved in tomato fruit softening, along with the xyloglucan modifying enzymes. Xyloglucan endotransglucosylase/hydrolases (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151) have been proposed to have a dual role integrating newly secreted xyloglucan chains into an existing wall-bound xyloglucan, or restructuring the existing cell wall material by catalyzing transglucosylation between previously wall-bound xyloglucan molecules. Here, 10 tomato (Solanum lycopersicum) SlXTHs were studied and grouped into three phylogenetic groups to determine which members of each family were expressed during fruit growth and fruit ripening, and the ways in which the expression of different SlXTHs contributed to the total XET and XEH activities. Our results showed that all of the SlXTHs studied were expressed during fruit growth and ripening, and that the expression of all the SlXTHs in Group 1 was clearly related to fruit growth, as were SlXTH12 in Group 2 and SlXTH6 in Group 3-B. Only the expression of SlXTH5 and SlXTH8 from Group 3-A was clearly associated with fruit ripening, although all 10 of the different SlXTHs were expressed at the red ripe stage. Both total XET and XEH activities were higher during fruit growth, and decreased during fruit ripening. Ethylene production during tomato fruit growth was low and experienced a significant increase during fruit ripening, which was not correlated either with SlXTH expression or with XET and XEH activities. We suggest that the role of XTH during fruit development could be related to the maintenance of the structural integrity of the cell wall, and the decrease in XTHs expression, and the subsequent decrease in activity during ripening may contribute to fruit softening, with this process being regulated through different XTH genes.  相似文献   

11.
Melanoma is the leading cause of skin cancer-related deaths, which is due in large part to its aggressive behavior, resistance to therapy, and ability to metastasize to multiple organs such as the lymph nodes, lung, and brain. Melanoma progresses in a stepwise manner from the benign nevus, to radial spreading through the dermis, to a vertical invasive phase, and finally to metastasis. The carbohydrate-binding family of galectins has a strong influence on each phase of melanoma progression through their effects on immune surveillance, angiogenesis, cell migration, tumor cell adhesion, and the cellular response to chemotherapy. Galectins share significant homology in their carbohydrate recognition domain (CRD), which mediates binding to an array of N-glycosylated proteins located on the surface of tumor cells, endothelial cells, T-cells, and to similarly glycosylated extracellular matrix proteins. Galectins are also present within tumor cells where they perform anti-apoptotic functions and enhance intracellular signaling that results in deregulated expression of genes involved in tumor progression. The most extensively studied galectins, galectin-1 and galectin-3, have been shown to have profound effects on melanoma growth and metastasis by influencing many of these biological processes.  相似文献   

12.
Like other types of plastids, chromoplasts have essential biosynthetic and metabolic activities which may be regulated via post‐translational modifications, such as phosphorylation, of their resident proteins. We here report a proteome‐wide mapping of in vivo phosphorylation sites in chromoplast‐enriched samples prepared from sweet orange [Citrus sinensis (L.) Osbeck] at different ripening stages by titanium dioxide‐based affinity chromatography for phosphoprotein enrichment with LC‐MS/MS. A total of 109 plastid‐localized phosphoprotein candidates were identified that correspond to 179 unique phosphorylation sites in 135 phosphopeptides. On the basis of Motif‐X analysis, two distinct types of phosphorylation sites, one as proline‐directed phosphorylation motif and the other as casein kinase II motif, can be generalized from these identified phosphopeptides. While most identified phosphoproteins show high homology to those already identified in plastids, approximately 22% of them are novel based on BLAST search using the public databases PhosPhAt and P3DB. A close comparative analysis showed that approximately 50% of the phosphoproteins identified in citrus chromoplasts find obvious counterparts in the chloroplast phosphoproteome, suggesting a rather high‐level of conservation in basic metabolic activities in these two types of plastids. Not surprisingly, the phosphoproteome of citrus chromoplasts is also characterized by the lack of phosphoproteins involved in photosynthesis and by the presence of more phosphoproteins implicated in stress/redox responses. This study presents the first comprehensive phosphoproteomic analysis of chromoplasts and may help to understand how phosphorylation regulates differentiation of citrus chromoplasts during fruit ripening.  相似文献   

13.
The modern concept of the hormonal regulation of fruit set, growth, maturation, and ripening is considered. Pollination and fertilization induce ovule activation by surmounting the blocking action of ethylene and ABA to be manifested in auxin accumulation. Active fruit growth by pericarp cell division and elongation is due to the syntheses of auxin in the developing seed and of gibberellins in the pericarp. In climacteric fleshy fruits, the maturation is controlled by ethylene via so-called System 1 combining the possibilities of autoinhibition and autocatalysis by ethylene of its own biosynthesis. Transition of tomato fruits from maturation to ripening is characterized by highly active synthesis of ethylene and its receptors due to the functioning of regulatory System 2 resulting in the up-regulation of much greater number of ethylene-inducible genes. In peach fruits, the hormonal regulation of ripening includes also an active auxin involvement in the ethylene biosynthesis, which is combined with the ethylene-induced expression of genes encoding both auxin biosynthesis and the response to auxin. Ethylene induces the expression of genes responsible for the fruit softening, its taste, color, and flavor. Nonclimacteric fleshy fruits produce very small amounts of ethylene; its evolution increases only by the very end of ripening and can be described by a reduced System 1. The ripening of nonclimacteric fruits only weakly depends on ethylene but is stimulated by abscisic acid.  相似文献   

14.
This study was aimed to assess the effects of calcium lactate (CL) on quality, shelf-life and storage physiology of bitter gourd. Fruits were dipped in the aqueous solution of CL (50, 75, and 100 mM) and stored at 10 °C and 85–95% relative humidity (RH). The changes in physical, biochemical and enzymological parameters were recorded at five days interval. The results showed that in CL@100 mM treated fruit, physiological loss in weight (PLW) and decay incidence were minimized. Conversely, their firmness, total phenolics, antioxidants and total chlorophyll retained at higher side. The CL @ 75 mM was able to retain higher ascorbic acid up to 20 days while CL@100 mM was effective in controlling pectin methylesterase (PME) activity and increasing the inhibitory activity of α-amylase and α-glucosidase. Therefore, our observations suggested that by applying CL@100 mM, 5 days extra (20 days) shelf-life of bitter gourd fruit can be achieved with notable retention of biochemical compounds over untreated fruit (15 days with poor retention of important nutrients).  相似文献   

15.
'La France' pear ( Pyrus communis L.) fruit stored at 1°C for 1 month (short-term storage) before transfer to 20°C softened and developed a melting texture during ripening, whereas fruit stored for 5 months (long-term storage) before transfer to 20°C softened but did not develop a melting texture. To clarify the mechanisms involved in fruit softening and textural changes, the cDNAs encoding cell-wall hydrolases were isolated by RT-PCR, and their expression and localization were investigated in 'La France' pears. Genes encoding three polygalacturonases (PG; EC 3.2.1.15), four pectin methylesterases (PME; EC 3.1.1.11), one α -arabinofuranosidase (ARF; EC 3.2.1.55), three β -galactosidases (GAL; EC 3.2.1.23), and two endo-1,4- β - d -glucanases (Cel; EC 3.2.1.4) were isolated. Among these 13 isolated genes, PcPG1 was the only gene for which the mRNA expression levels increased in both the short- and long-term stored fruits. This suggested that PcPG1 is involved in fruit softening rather than in the development of the melting texture. In contrast, the expression levels of PcPG3 , PcPME1 , PcPME2 , PcPME3 , PcGAL1 , PcGAL2 , and PcCel2 increased during ripening only in the short-term stored fruit. These genes might thus be involved in the development of the melting texture.  相似文献   

16.
The cytokinin content in fruit tissue of the kiwifruit ( Actinidia deliciosa [A. Chev.] C. F. Liang et A. R. Ferguson var. deliciosa cv. Hayward) was monitored during fruit development to identify which cytokinins were present and if they were linked with specific stages of fruit growth. Cytokinins were isolated and purified by column chromatography and high-performance liquid chromatography and quantified by radioimmunoassay. A novel HPLC step utilising an amine column was successfully introduced as a preparative step in the separation of the O - and 9-glucosides from the free bases and ribosides. The radioimmunoassay results were validated, and the different cytokinins identified, by gas chromatography-mass spectrometry. Cytokinins detected in fruit included the cytokinin free bases, zeatin and isopentenyladenine, their ribosides, nucleotides and both O - and 9-glucosides. Both qualitative and quantitative changes of the cytokinins occurred during fruit development. A decrease in cytokinin concentration occurred after anthesis (from 342 pmol g−1 fresh weight at anthesis to 41 pmol g−1 fresh weight 27 days after anthesis). A large increase in cytokinin concentration and content per fruit occurred as the fruit reached commercial maturity (to 1900 pmol g−1 fresh weight). Individual cytokinins showed quite different patterns. Zeatin, in particular, showed a peak in concentration (13 pmol g−1 fresh weight) 11 days after anthesis that correlated with the beginning of the cell division phase of fruit growth. The accumulation of cytokinin (mostly zeatin riboside or zeatin nucleotide) in mature fruit may be of significance for the postharvest storage of kiwifruit fruit.  相似文献   

17.
18.
19.
Umami and sweet sensations provide animals with important dietary information for detecting and consuming nutrients, whereas bitter sensation helps animals avoid potentially toxic or harmful substances. Enormous progress has been made toward animal sweet/umami taste receptor (Tas1r) and bitter taste receptor (Tas2r). However, information about amphibians is mainly scarce. This study attempted to delineate the repertoire of Tas1r/Tas2r genes by searching for currently available genome sequences in 14 amphibian species. This study identified 16 Tas1r1, 9 Tas1r2, and 9 Tas1r3 genes to be intact and another 17 Tas1r genes to be pseudogenes or absent in the 14 amphibians. According to the functional prediction of Tas1r genes, two species have lost sweet sensation and seven species have lost both umami and sweet sensations. Anurans possessed a large number of intact Tas2rs, ranging from 39 to 178. In contrast, caecilians possessed a contractive bitter taste repertoire, ranging from 4 to 19. Phylogenetic and reconciling analysis revealed that the repertoire of amphibian Tas1rs and Tas2rs was shaped by massive gene duplications and losses. No correlation was found between feeding preferences and the evolution of Tas1rs in amphibians. However, the expansion of Tas2rs may help amphibians adapt to both aquatic and terrestrial habitats. Bitter detection may have played an important role in the evolutionary adaptation of vertebrates in the transition from water to land.  相似文献   

20.
The maximal perceived sweet intensity (Ipmax) and the sweetpersistence constant (T) of neohesperidin dihydrochalcone (NHD),were significantly reduced in a mixture containing naringin(NAR), a bitter flavone analog of NHD Sucrose octa-acetate (SOA),another bitter stimulus, reduced the Ipmax of NHD in mixtures,but no appreciable decrease in T values was found. Linear regressionanalyses performed on the IPmax data of either NHD + NAR orNHD + SOA (logIpmax versus log concentration) produced slopevalues lower than those of NHD alone. Moreover, taste similarityexperiments revealed that the mixture of NHD + NAR was locatedfurther than NHD from the sugar area in the multi-dimensionalscaling (MDS) map. It is concluded that the reduction in Tvaluesof NHD by NAR was apparently related to the reduced Ipmax levelsand that such a mixture produces a sweet quality inferior tothat of NHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号