首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
油菜素甾醇(BR)作为植物内源激素, 广泛参与植物的生长发育过程及逆境应答。虽然BR调控生长发育的分子机制目前已相对清楚, 但在水稻(Oryza sativa)中, BR在逆境反应中的功能还鲜有报道。该研究系统分析了BR在高盐胁迫过程中的作用, 表明盐胁迫和逆境激素脱落酸可抑制BR合成基因D2D11的表达, 典型的BR缺陷突变体(如d2-2d61-1)则表现出对盐胁迫敏感性增强。此外, 通过对BR核心转录因子OsBZR1的过表达株系进行分析, 发现BR可显著诱导OsBZR1的去磷酸化, 盐胁迫对OsBZR1蛋白的积累水平和磷酸化状态均有调控作用。转录组数据分析表明, BR处理前后差异表达基因中有38.4%同时受到盐胁迫调控, 其中91.5%受到BR和高盐一致调控, 并显著富集在应激反应过程中。研究结果表明, BR正调控水稻的耐盐性, 而盐胁迫通过抑制BR合成来限制水稻的生长。  相似文献   

2.
Brassinolide (BL), considered to be the most important brassinosteroid (BR) and playing pivotal roles in the hormonal regulation of plant growth and development, was found to induce disease resistance in plants. To study the potentialities of BL activity on stress responding systems, we analyzed its ability to induce disease resistance in tobacco and rice plants. Wild-type tobacco treated with BL exhibited enhanced resistance to the viral pathogen tobacco mosaic virus (TMV), the bacterial pathogen Pseudomonas syringae pv. tabaci (Pst), and the fungal pathogen Oidium sp. The measurement of salicylic acid (SA) in wild-type plants treated with BL and the pathogen infection assays using NahG transgenic plants indicate that BL-induced resistance does not require SA biosynthesis. BL treatment did not induce either acidic or basic pathogenesis-related (PR) gene expression, suggesting that BL-induced resistance is distinct from systemic acquired resistance (SAR) and wound-inducible disease resistance. Analysis using brassinazole 2001, a specific inhibitor for BR biosynthesis, and the measurement of BRs in TMV-infected tobacco leaves indicate that steroid hormone-mediated disease resistance (BDR) plays part in defense response in tobacco. Simultaneous activation of SAR and BDR by SAR inducers and BL, respectively, exhibited additive protective effects against TMV and Pst, indicating that there is no cross-talk between SAR- and BDR-signaling pathway downstream of BL. In addition to the enhanced resistance to a broad range of diseases in tobacco, BL induced resistance in rice to rice blast and bacterial blight diseases caused by Magnaporthe grisea and Xanthomonas oryzae pv. oryzae, respectively. Our data suggest that BDR functions in the innate immunity system of higher plants including dicotyledonous and monocotyledonous species.  相似文献   

3.
4.
5.
6.
A role for brassinosteroids in germination in Arabidopsis   总被引:21,自引:0,他引:21       下载免费PDF全文
This paper presents evidence that plant brassinosteroid (BR) hormones play a role in promoting germination. It has long been recognized that seed dormancy and germination are regulated by the plant hormones abscisic acid (ABA) and gibberellin (GA). These two hormones act antagonistically with each other. ABA induces seed dormancy in maturing embryos and inhibits germination of seeds. GA breaks seed dormancy and promotes germination. Severe mutations in GA biosynthetic genes in Arabidopsis, such as ga1-3, result in a requirement for GA application to germinate. Whereas previous work has shown that BRs play a critical role in controlling cell elongation, cell division, and skotomorphogenesis, no germination phenotypes have been reported in BR mutants. We show that BR rescues the germination phenotype of severe GA biosynthetic mutants and of the GA-insensitive mutant sleepy1. This result shows that BR stimulates germination and raises the possibility that BR is needed for normal germination. If true, we would expect to detect a germination phenotype in BR mutants. We found that BR mutants exhibit a germination phenotype in the presence of ABA. Germination of both the BR biosynthetic mutant det2-1 and the BR-insensitive mutant bri1-1 is more strongly inhibited by ABA than is germination of wild type. Thus, the BR signal is needed to overcome inhibition of germination by ABA. Taken together, these results point to a role for BRs in stimulating germination.  相似文献   

7.
8.
9.
10.
Brassinosteroids in plant developmental signaling networks   总被引:1,自引:0,他引:1  
  相似文献   

11.
Brassinosteroids (BRs) are plant steroids essential for normal growth and development. To gain insight into the molecular mechanism by which BRs regulate the growth and development of plants, it is necessary to identify and analyze more genes that are regulated by BRs. A novel brassinolide (BL)-enhanced gene designated OsBLE1, which was originally identified by using rice (Oryza sativa L.) cDNA microarray, was cloned and characterized. Its cDNA is 598 bp long, encoding a predicted polypeptide with 81 amino acid residues. Northern blots analysis revealed that OsBLE1 expression began to increase at 6 h and reached its maximum at 12 h after BL treatment. OsBLE1 expression was most responsive to BL in lamina joint in rice seedlings; besides, IAA and GA3 also enhanced its expression. OsBLE1 expressed mainly in active tissues such as vascular bundles and root primordial. Transgenic rice expressing antisense OsBLE1 exhibits various degrees of repressed growth. Results suggest that OsBLE1 might be involved in BL-regulated growth processes in rice seedlings.  相似文献   

12.
Wang  Sining  Sun  Huayu  Xu  Xiurong  Yang  Kebin  Zhao  Hansheng  Li  Ying  Li  Xueping  Gao  Zimin 《Molecular biology reports》2019,46(2):1909-1930
Molecular Biology Reports - Brassinosteroids (BRs) are a group of plant steroid hormones that play crucial roles in a range of plant growth and development processes. BR action includes active BR...  相似文献   

13.
Brassinosteroid-Mediated Stress Responses   总被引:25,自引:3,他引:22  
Brassinosteroids (BRs) are a group of naturally occurring plant steroidal compounds with wide-ranging biological activity that offer the unique possibility of increasing crop yields through both changing plant metabolism and protecting plants from environmental stresses. In recent years, genetic and biochemical studies have established an essential role for BRs in plant development, and on this basis BRs have been given the stature of a phytohormone. A remarkable feature of BRs is their potential to increase resistance in plants to a wide spectrum of stresses, such as low and high temperatures, drought, high salt, and pathogen attack. Despite this, only a few studies aimed at understanding the mechanism by which BRs promote stress resistance have been undertaken. Studies of the BR signaling pathway and BR gene-regulating properties indicate that there is cross-talk between BRs and other hormones, including those with established roles in plant defense responses such as abscisic acid, jasmonic acid, and ethylene. Recent studies aimed at understanding how BRs modulate stress responses suggest that complex molecular changes underlie BR-induced stress tolerance in plants. Analyses of these changes should generate exciting results in the future and clarify whether the ability of BRs to increase plant resistance to a range of stresses lies in the complex interactions of BRs with other hormones. Future studies should also elucidate if BRI1, an essential component of the BR receptor, directly participates in stress response signaling through interactions with ligands and proteins involved in plant defense responses.  相似文献   

14.
Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze expression changes of genes and proteins at genome scale. In this review, we summarize rice functional genomic research by using microarray and proteomic approaches and our recent research results focusing on the comparison of cDNA microarray and proteomic analyses of BR- and GA-regulated gene and protein expression in rice. We believe our findings have important implications for understanding the mechanism by which BR and GA regulate the growth and development of rice.  相似文献   

15.
16.
Brassinosteroids (BRs) are endogenous plant hormones essential for plant growth and development. Brassinosteroid insensitive1 (BRI1)-assocaiated receptor kinase (BAK1) is one of the key components in the BR signal transduction pathway due to its direct association with the BR receptor, BRI1. Although BRI1 and its orthologs have been identified from both dicotyledonous and monocotyledonous plants, less is known about BAK1 and its orthologs in higher plants other than Arabidopsis. This article provides the first piece of evidence that AtBAK1 can greatly affect growth and development of rice plants when ectopically expressed, suggesting that rice may share similar BR perception mechanism via BRI1/BAK1 complex. Interestingly, transgenic rice plants displayed semi-dwarfism and shortened primary roots. Physiological analysis and cell morphology assay demonstrated that the observed phenotypes in transgenic plants were presumably caused by hypersensitivity to endogenous levels of BRs, different from BR insensitive and deficient rice mutants. Consistently, several known BR inducible genes were also upregulated in transgenic rice plants, further suggesting that BAK1 was able to affect BR signaling in rice. On the other hand, the transgenic plants generated by overproducing AtBAK1 may potentially have agricultural applications because the dwarfed phenotype is generally resistant to lodging, while the fertility remains unaffected.  相似文献   

17.
The sterol biosynthesis pathway of Arabidopsis produces a large set of structurally related phytosterols including sitosterol and campesterol, the latter being the precursor of the brassinosteroids (BRs). While BRs are implicated as phytohormones in post-embryonic growth, the functions of other types of steroid molecules are not clear. Characterization of the fackel (fk) mutants provided the first hint that sterols play a role in plant embryogenesis. FK encodes a sterol C-14 reductase that acts upstream of all known enzymatic steps corresponding to BR biosynthesis mutants. Here we report that genetic screens for fk-like seedling and embryonic phenotypes have identified two additional genes coding for sterol biosynthesis enzymes: CEPHALOPOD (CPH), a C-24 sterol methyl transferase, and HYDRA1 (HYD1), a sterol C-8,7 isomerase. We describe genetic interactions between cph, hyd1 and fk, and studies with 15-azasterol, an inhibitor of sterol C-14 reductase. Our experiments reveal that FK and HYD1 act sequentially, whereas CPH acts independently of these genes to produce essential sterols. Similar experiments indicate that the BR biosynthesis gene DWF1 acts independently of FK, whereas BR receptor gene BRI1 acts downstream of FK to promote post-embryonic growth. We found embryonic patterning defects in cph mutants and describe a GC-MS analysis of cph tissues which suggests that steroid molecules in addition to BRs play critical roles during plant embryogenesis. Taken together, our results imply that the sterol biosynthesis pathway is not a simple linear pathway but a complex network of enzymes that produce essential steroid molecules for plant growth and development.  相似文献   

18.
Auxin is a key plant growth regulator that also impacts plant–pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole‐3‐acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector‐triggered immunity was active in YUC1‐overexpressing plants, and we observed only minor effects on SA levels and SA‐mediated responses. Furthermore, a plant line carrying both the YUC1‐overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA‐mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA‐mediated defenses.  相似文献   

19.
Brassinosteroid Signal Transduction: A Mix of Conservation and Novelty   总被引:3,自引:0,他引:3  
Brassinosteroids (BRs) are a unique class of plant steroids that are structurally similar to animal steroid hormones and play important roles in plant growth and development. Unlike the animal steroids, which bind to classical intracellular steroid receptors that directly modulate gene activities after translocation into the nucleus, the plant steroids rely on transmembrane receptor kinases to activate a phosphorylation cascade to regulate gene expression. Recent genetic and biochemical studies have identified several critical BR signaling components and revealed a striking mechanistic similarity between the plant steroid signaling pathway and several well-studied animal signaling cascades involving a receptor kinase and glycogen synthase kinase 3 (GSK3). A working model for BR signal transduction proposes that BR initiates its signaling pathway by promoting heterodimerization of two transmembrane receptor-like kinases at the cell surface, leading to inhibition of a GSK3 kinase and subsequent stabilization and nuclear accumulation of two GSK3 substrates that regulate BR-responsive genes. Such a simple model provides a framework for continued investigation of molecular mechanism(s) of plant steroid signaling.  相似文献   

20.
Brassinazole is the only known specific brassinosteroid (BR)-biosynthesis inhibitor, and it has been shown to be useful for elucidating the function of BRs. In the course of a structure-activity relationship study of brassinazole, we found a more specific BR-biosynthesis inhibitor, Brz2001. This new inhibitor induced similar morphological changes to those seen in brassinazole-treated plants, including Arabidopsis thaliana (L.) Heynh., Nicotiana tabacum L., and Lepidium sativum L. These changes included dwarfism with altered leaf morphology, including downward curling and dark-green color, and the changes were reversed by brassinolide. Although the structure of Brz2001 is similar to that of uniconazole, a gibberellin-biosynthesis inhibitor, Brz2001-treated plants showed almost no recovery with the addition of gibberellic acid (GA3). Comparison of the responses of both brassinazole- and Brz2001-treated cress to brassinolide and GA3 suggested that Brz2001 is a more specific BR-biosynthesis inhibitor than brassinazole. Unlike the results just described, Brz2001-treated rice did not show any morphological changes. This suggests that the roles of BRs in rice may be different from those in the dicotyledonous plants examined in this study. Brz2001 can be used to clarify the function of BRs in dicots as a complement to BR-deficient mutants, and to elucidate the different roles of BRs in monocots and dicots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号