首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although approaches for performing genome‐wide association studies (GWAS) are well developed, conventional GWAS requires high‐density genotyping of large numbers of individuals from a diversity panel. Here we report a method for performing GWAS that does not require genotyping of large numbers of individuals. Instead XP‐GWAS (extreme‐phenotype GWAS) relies on genotyping pools of individuals from a diversity panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest. This method was evaluated in maize (Zea mays) using the well‐characterized kernel row number trait, which was selected to enable comparisons between the results of XP‐GWAS and conventional GWAS. An exome‐sequencing strategy was used to focus sequencing resources on genes and their flanking regions. A total of 0.94 million variants were identified and served as evaluation markers; comparisons among pools showed that 145 of these variants were statistically associated with the kernel row number phenotype. These trait‐associated variants were significantly enriched in regions identified by conventional GWAS. XP‐GWAS was able to resolve several linked QTL and detect trait‐associated variants within a single gene under a QTL peak. XP‐GWAS is expected to be particularly valuable for detecting genes or alleles responsible for quantitative variation in species for which extensive genotyping resources are not available, such as wild progenitors of crops, orphan crops, and other poorly characterized species such as those of ecological interest.  相似文献   

4.
The discovery of genetic variants that underlie a complex phenotype is challenging. One possible approach to facilitate this endeavor is to identify quantitative trait loci (QTL) that contribute to the phenotype and consequently unravel the candidate genes within these loci. Each proposed candidate locus contains multiple genes and, therefore, further analysis is required to choose plausible candidate genes. One of such methods is to use comparative genomics in order to narrow down the QTL to a region containing only a few genes. We illustrate this strategy by applying it to genetic findings regarding physical activity (PA) in mice and human. Here, we show that PA is a complex phenotype with a strong biological basis and complex genetic architecture. Furthermore, we provide considerations for the translatability of this phenotype between species. Finally, we review studies which point to candidate genetic regions for PA in humans (genetic association and linkage studies) or use mouse models of PA (QTL studies) and we identify candidate genetic regions that overlap between species. On the basis of a large variety of studies in mice and human, statistical analysis reveals that the number of overlapping regions is not higher than expected on a chance level. We conclude that the discovery of new candidate genes for complex phenotypes, such as PA levels, is hampered by various factors, including genetic background differences, phenotype definition and a wide variety of methodological differences between studies .  相似文献   

5.
Advances in QTL mapping in pigs   总被引:8,自引:0,他引:8  
Over the past 15 years advances in the porcine genetic linkage map and discovery of useful candidate genes have led to valuable gene and trait information being discovered. Early use of exotic breed crosses and now commercial breed crosses for quantitative trait loci (QTL) scans and candidate gene analyses have led to 110 publications which have identified 1,675 QTL. Additionally, these studies continue to identify genes associated with economically important traits such as growth rate, leanness, feed intake, meat quality, litter size, and disease resistance. A well developed QTL database called PigQTLdb is now as a valuable tool for summarizing and pinpointing in silico regions of interest to researchers. The commercial pig industry is actively incorporating these markers in marker-assisted selection along with traditional performance information to improve traits of economic performance. The long awaited sequencing efforts are also now beginning to provide sequence available for both comparative genomics and large scale single nucleotide polymorphism (SNP) association studies. While these advances are all positive, development of useful new trait families and measurement of new or underlying traits still limits future discoveries. A review of these developments is presented.  相似文献   

6.
The genotyping of closely spaced single-nucleotide polymorphism (SNP) markers frequently yields highly correlated data, owing to extensive linkage disequilibrium (LD) between markers. The extent of LD varies widely across the genome and drives the number of frequent haplotypes observed in small regions. Several studies have illustrated the possibility that LD or haplotype data could be used to select a subset of SNPs that optimize the information retained in a genomic region while reducing the genotyping effort and simplifying the analysis. We propose a method based on the spectral decomposition of the matrices of pairwise LD between markers, and we select markers on the basis of their contributions to the total genetic variation. We also modify Clayton's "haplotype tagging SNP" selection method, which utilizes haplotype information. For both methods, we propose sliding window-based algorithms that allow the methods to be applied to large chromosomal regions. Our procedures require genotype information about a small number of individuals for an initial set of SNPs and selection of an optimum subset of SNPs that could be efficiently genotyped on larger numbers of samples while retaining most of the genetic variation in samples. We identify suitable parameter combinations for the procedures, and we show that a sample size of 50-100 individuals achieves consistent results in studies of simulated data sets in linkage equilibrium and LD. When applied to experimental data sets, both procedures were similarly effective at reducing the genotyping requirement while maintaining the genetic information content throughout the regions. We also show that haplotype-association results that Hosking et al. obtained near CYP2D6 were almost identical before and after marker selection.  相似文献   

7.
Asthma is a complex trait for which different strategies have been used to identify its environmental and genetic predisposing factors. Here, we describe a novel methodological approach to select candidate genes for asthma genetic association studies. In this regard, the Genes to Diseases (G2D) computational tool has been used in combination with a genome-wide scan performed in a sub-sample of the Saguenay-Lac-St-Jean (SLSJ) asthmatic familial collection (n = 609) to identify candidate genes located in two suggestive loci shown to be linked with asthma (6q26) and atopy (10q26.3), and presenting differential parent-of-origin effects. This approach combined gene selection based on the G2D data mining analysis of the bibliographic and protein public databases, or according to the genes already known to be associated with the same or a similar phenotype. Ten genes (LPA, NOX3, SNX9, VIL2, VIP, ADAM8, DOCK1, FANK1, GPR123 and PTPRE) were selected for a subsequent association study performed in a large SLSJ sample (n = 1167) of individuals tested for asthma and atopy related phenotypes. Single nucleotide polymorphisms (n = 91) within the candidate genes were genotyped and analysed using a family-based association test. The results suggest a protective association to allergic asthma for PTPRE rs7081735 in the SLSJ sample (p = 0.000463; corrected p = 0.0478). This association has not been replicated in the Childhood Asthma Management Program (CAMP) cohort. Sequencing of the regions around rs7081735 revealed additional polymorphisms, but additional genotyping did not yield new associations. These results demonstrate that the G2D tool can be useful in the selection of candidate genes located in chromosomal regions linked to a complex trait.  相似文献   

8.
Zou G  Pan D  Zhao H 《Genetics》2003,164(3):1161-1173
The identification of genotyping errors is an important issue in mapping complex disease genes. Although it is common practice to genotype multiple markers in a candidate region in genetic studies, the potential benefit of jointly analyzing multiple markers to detect genotyping errors has not been investigated. In this article, we discuss genotyping error detections for a set of tightly linked markers in nuclear families, and the objective is to identify families likely to have genotyping errors at one or more markers. We make use of the fact that recombination is a very unlikely event among these markers. We first show that, with family trios, no extra information can be gained by jointly analyzing markers if no phase information is available, and error detection rates are usually low if Mendelian consistency is used as the only standard for checking errors. However, for nuclear families with more than one child, error detection rates can be greatly increased with the consideration of more markers. Error detection rates also increase with the number of children in each family. Because families displaying Mendelian consistency may still have genotyping errors, we calculate the probability that a family displaying Mendelian consistency has correct genotypes. These probabilities can help identify families that, although showing Mendelian consistency, may have genotyping errors. In addition, we examine the benefit of available haplotype frequencies in the general population on genotyping error detections. We show that both error detection rates and the probability that an observed family displaying Mendelian consistency has correct genotypes can be greatly increased when such additional information is available.  相似文献   

9.

Background

Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world.

Results

The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs, only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic distances shows population stratification, including a small number of large clusters centered on key lines. Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the particular group of germplasm and region of the genome. The utility of these data for performing genome-wide association studies was tested with two simply inherited traits and one complex trait. We identified trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time; however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits.

Conclusions

The genotypic information described here allows this publicly available panel to be exploited by researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic diversity.  相似文献   

10.
Cui Y  Kang G  Sun K  Qian M  Romero R  Fu W 《Genetics》2008,179(1):637-650
Genes are the functional units in most organisms. Compared to genetic variants located outside genes, genic variants are more likely to affect disease risk. The development of the human HapMap project provides an unprecedented opportunity for genetic association studies at the genomewide level for elucidating disease etiology. Currently, most association studies at the single-nucleotide polymorphism (SNP) or the haplotype level rely on the linkage information between SNP markers and disease variants, with which association findings are difficult to replicate. Moreover, variants in genes might not be sufficiently covered by currently available methods. In this article, we present a gene-centric approach via entropy statistics for a genomewide association study to identify disease genes. The new entropy-based approach considers genic variants within one gene simultaneously and is developed on the basis of a joint genotype distribution among genetic variants for an association test. A grouping algorithm based on a penalized entropy measure is proposed to reduce the dimension of the test statistic. Type I error rates and power of the entropy test are evaluated through extensive simulation studies. The results indicate that the entropy test has stable power under different disease models with a reasonable sample size. Compared to single SNP-based analysis, the gene-centric approach has greater power, especially when there is more than one disease variant in a gene. As the genomewide genic SNPs become available, our entropy-based gene-centric approach would provide a robust and computationally efficient way for gene-based genomewide association study.  相似文献   

11.
12.
13.
Association studies in populations that are genetically heterogeneous can yield large numbers of spurious associations if population subgroups are unequally represented among cases and controls. This problem is particularly acute for studies involving pooled genotyping of very large numbers of single-nucleotide-polymorphism (SNP) markers, because most methods for analysis of association in structured populations require individual genotyping data. In this study, we present several strategies for matching case and control pools to have similar genetic compositions, based on ancestry information inferred from genotype data for approximately 300 SNPs tiled on an oligonucleotide-based genotyping array. We also discuss methods for measuring the impact of population stratification on an association study. Results for an admixed population and a phenotype strongly confounded with ancestry show that these simple matching strategies can effectively mitigate the impact of population stratification.  相似文献   

14.
Wessel J  Zapala MA  Schork NJ 《Genomics》2007,90(1):132-142
The availability of high-throughput genotyping technologies and microarray assays has allowed researchers to consider pursuing investigations whose ultimate goal is the identification of genetic variations that influence levels of gene expression, e.g., "expression quantitative trait locus" or "eQTL" mapping studies. However, the large number of genes whose expression levels can be tested for association with genetic variations in such studies can create both statistical and biological interpretive problems. We consider the integrated analysis of eQTL mapping data that incorporates pathway, function, and disease process information. The goal of this analysis is to determine if compelling patterns emerge from the data that are consistent with the notion that perturbations in the molecular physiologic environment induced by genetic variations implicate the expression patterns of multiple genes via genetic network relationships or feedback mechanisms. We apply available genetic network and pathway analysis software, as well as a novel regression analysis technique, to carry out the proposed studies. We also consider extensions of the proposed strategies and areas of future research.  相似文献   

15.
Analysis of haplotypes based on multiple single-nucleotide polymorphisms (SNP) is becoming common for both candidate gene and fine-mapping studies. Before embarking on studies of haplotypes from genetically distinct populations, however, it is important to consider variation both in linkage disequilibrium (LD) and in haplotype frequencies within and across populations, as both vary. Such diversity will influence the choice of "tagging" SNPs for candidate gene or whole-genome association studies because some markers will not be polymorphic in all samples and some haplotypes will be poorly represented or completely absent. Here we analyze 11 genes, originally chosen as candidate genes for oral clefts, where multiple markers were genotyped on individuals from four populations. Estimated haplotype frequencies, measures of pairwise LD, and genetic diversity were computed for 135 European-Americans, 57 Chinese-Singaporeans, 45 Malay-Singaporeans, and 46 Indian-Singaporeans. Patterns of pairwise LD were compared across these four populations and haplotype frequencies were used to assess genetic variation. Although these populations are fairly similar in allele frequencies and overall patterns of LD, both haplotype frequencies and genetic diversity varied significantly across populations. Such haplotype diversity has implications for designing studies of association involving samples from genetically distinct populations.  相似文献   

16.
Molecular variation within defined genes underlying specific biochemical or physiological functions provide candidate gene-based markers which show very close association with the trait of interest and thus should enable to design superior genotypes. We explored microsatellite loci in a total of 9,892 subtracted drought stress ESTs of sorghum (6,295 after flowering ESTs and 3,597 before flowering ESTs) available in the NCBI dbEST database. Analysis of 9,892 ESTs identified 221 non-redundant ESTs with SSRs, from which 109 functional SSRs were developed. Among them 62 EST-microsatellites (56.8%) exhibited polymorphism for at least one sorghum genotype among the five tested and yielded a total of 161 alleles, with an average of 2.59 alleles per marker. We present a microsatellite linkage map using a RIL population derived from the cross 296B and IS18551. The map contains 128 microsatellite loci distributed over 15 linkage groups, and spanning a genetic distance of 1,074.5 cM. The map includes map positions of 28 drought EST-microsatellites developed and seven new genomic-SSRs, and are distributed throughout the map. The developed EST markers include genes coding for important regulatory proteins and functional proteins that are involved in stress related metabolism. The drought EST-microsatellites will have applications in functional diversity studies, association studies, QTL studies for drought, and other agronomically important traits in sorghum, and comparative genomics studies between sorghum and other members of the Poaceae family.  相似文献   

17.
Family-based association tests for genomewide association scans   总被引:7,自引:1,他引:6       下载免费PDF全文
With millions of single-nucleotide polymorphisms (SNPs) identified and characterized, genomewide association studies have begun to identify susceptibility genes for complex traits and diseases. These studies involve the characterization and analysis of very-high-resolution SNP genotype data for hundreds or thousands of individuals. We describe a computationally efficient approach to testing association between SNPs and quantitative phenotypes, which can be applied to whole-genome association scans. In addition to observed genotypes, our approach allows estimation of missing genotypes, resulting in substantial increases in power when genotyping resources are limited. We estimate missing genotypes probabilistically using the Lander-Green or Elston-Stewart algorithms and combine high-resolution SNP genotypes for a subset of individuals in each pedigree with sparser marker data for the remaining individuals. We show that power is increased whenever phenotype information for ungenotyped individuals is included in analyses and that high-density genotyping of just three carefully selected individuals in a nuclear family can recover >90% of the information available if every individual were genotyped, for a fraction of the cost and experimental effort. To aid in study design, we evaluate the power of strategies that genotype different subsets of individuals in each pedigree and make recommendations about which individuals should be genotyped at a high density. To illustrate our method, we performed genomewide association analysis for 27 gene-expression phenotypes in 3-generation families (Centre d'Etude du Polymorphisme Humain pedigrees), in which genotypes for ~860,000 SNPs in 90 grandparents and parents are complemented by genotypes for ~6,700 SNPs in a total of 168 individuals. In addition to increasing the evidence of association at 15 previously identified cis-acting associated alleles, our genotype-inference algorithm allowed us to identify associated alleles at 4 cis-acting loci that were missed when analysis was restricted to individuals with the high-density SNP data. Our genotype-inference algorithm and the proposed association tests are implemented in software that is available for free.  相似文献   

18.
Liu TL  Kuai BK  Liu ZX  Zhao DL  Shen DL 《Genetika》2006,42(8):1089-1095
In Arabidopsis, map-based cloning has been developed to an effective method in mutant genetic analysis because high-density markers are available, candidate genes or genomic sequences can be amplified by PCR and transgenic techniques are simplified. Mutant ses named from shortened early-stage siliques was used as an example to show how to map a mutant in this day. By the process of bulked segregants analysis, linkage testing, large-scale and fine scale mapping, mutant ses was narrowed into a 67 kb interval from CER448792 (2000541 bp) to CER464544 (2067844 bp) crossing over the right of BAC F12K11 to the left of the BAC F4H5 including at most 22 putative genes on the top of chromosome l. In sequence-based map of Arabidopsis genes with Mutant phenotype (SMAGMP) mutant ses was between ATlg06150 (EMB1444) and ATlg08060 (MOM). The SES mapping also showed that developed markers on polymorphism site of CAPC not only were simplified and but worked well. 24 markers from CAPC used in the mapping maybe help Arabidopsis researches with others and the methods related to SES mapping also gave an example of positional cloning.  相似文献   

19.
The identification of functional polymorphisms in genes that underlie behavioural trait variation is a challenging but intriguing task in evolutionary biology. Given the wealth of genomic data and the increasing number of genotype–phenotype association studies in model organisms, one can ask whether and how this information can be used for non-model organisms. Here we describe two strategies to search for likely functional polymorphisms in candidate genes in a bird species that has been intensively studied by behavioural and population ecologists, the blue tit Cyanistes caeruleus. In the first approach we searched for repeating elements in coding regions of the genome using information about repeats in Gallus gallus genes. The rationale is that tandem-repeat elements have a high potential to be polymorphic and functional. The second strategy aimed to replicate reported genotype–phenotype association studies by extrapolating results from model organisms to our study species. Both strategies showed high success rates with respect to finding homologous gene regions and potentially informative genetic variants in the genes AANAT, ADCYAP1, CKIε, CLOCK, CREB1, NPAS2 and PERIOD2. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Angiotensin I-converting enzyme inhibitors (ACEi), which are used to treat common cardiovascular diseases, are associated with a potentially life-threatening adverse reaction known as angioedema (AE-ACEi). We have previously documented a significant association between AE-ACEi and low plasma aminopeptidase P (APP) activity. With eight large pedigrees, we hereby demonstrate that this quantitative trait is partially regulated by genetic factors. We tested APP activity using a variance-component QTL analysis of a 10-cM genomewide microsatellite scan enriched with seven markers over two candidate regions. We found significant linkage (LOD = 3.75) to a locus that includes the XPNPEP2 candidate gene encoding membrane-bound APP. Mutation screening of this QTL identified a large coding deletion segregating in one pedigree and an upstream single-nucleotide polymorphism (C-2399A SNP), which segregates in the remaining seven pedigrees. Measured genotype analysis strongly suggests that the linkage signal for APP activity at this locus is accounted for predominantly by the SNP association. In a separate case-control study (20 cases and 60 controls), we found significant association of this SNP to ACEi-induced AE (P=.0364). In conclusion, our findings provide supporting evidence that the C-2399A variant in XPNPEP2 is associated with reduced APP activity and a higher incidence of AE-ACEi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号