首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roitel O  Scrutton NS  Munro AW 《Biochemistry》2003,42(36):10809-10821
Cys-999 is one component of a triad (Cys-999, Ser-830, and Asp-1044) located in the FAD domain of flavocytochrome P450 BM3 that is almost entirely conserved throughout the diflavin reductase family of enzymes. The role of Cys-999 has been studied by steady-state kinetics, stopped-flow spectroscopy, and potentiometry. The C999A mutants of BM3 reductase (containing both FAD and FMN cofactors) and the isolated FAD domain are substantially compromised in their capacity to reduce artificial electron acceptors in steady-state turnover with either NADPH or NADH as electron donors. Stopped-flow studies indicate that this is due primarily to a substantially slower rate of hydride transfer from nicotinamide coenzyme to FAD cofactor in the C999A enzymes. The compromised rates of hydride transfer are not attributable to altered thermodynamic properties of the flavins. A reduced enzyme-NADP(+) charge-transfer species is populated following hydride transfer in the wild-type FAD domain, consistent with the slow release of NADP(+) from the 2-electron-reduced enzyme. This intermediate does not accumulate in the C999A FAD domain or wild-type and C999A BM3 reductases, suggesting more rapid release of NADP(+) from these enzyme forms. Rapid internal electron transfer from FAD to FMN in wild-type BM3 reductase releases NADP(+) from the nicotinamide-binding site, thus preventing the inhibition of enzyme activity through the accumulation of a stable FADH(2)-NADP(+) charge-transfer complex. Hydride transfer is reversible, and the observed rate of oxidation of the 2-electron-reduced C999A BM3 reductase and FAD domain is hyperbolically dependent on NADP(+) concentration. With the wild-type BM3 reductase and FAD domain, the rate of flavin oxidation displays an unusual dependence on NADP(+) concentration, consistent with a two-site binding model in which two coenzyme molecules bind to catalytic and regulatory regions (or sites) within a bipartite coenzyme binding site. A kinetic model is proposed in which binding of coenzyme to the regulatory site hinders sterically the release of NADPH from the catalytic site. The results are discussed in the light of kinetic and structural studies on mammalian cytochrome P450 reductase.  相似文献   

2.
P450 BM3 is a multi-domain heme-containing soluble bacterial monooxygenase. P450 BM3 and variants are known to oxidize structurally diverse substrates. Crystal structures of individual domains of P450 BM3 are available. However, the spatial organization of the full-length protein is unknown. In this study, crystal structures of the P450 BM3 M7 heme domain variant with and without cobalt (III) sepulchrate are reported. Cobalt (III) sepulchrate acts as an electron shuttle in an alternative cofactor system employing zinc dust as the electron source. The crystal structure shows a binding site for the mediator cobalt (III) sepulchrate at the entrance of the substrate access channel. The mediator occupies an unusual position which is far from the active site and distinct from the binding of the natural redox partner (FAD/NADPH binding domain).  相似文献   

3.
Flavocytochrome P450 BM3, an FMN-deficient mutant (G570 D), the component reductase and an FAD-containing domain were studied using surface enhanced resonance Raman scattering (SERRS). They were compared to spectra obtained from the free flavins FAD and FMN. For the holoenzyme and reductase domain, FMN is displaced during SERRS analysis. However, studies with the G570 D mutant indicate that FAD is retained in its active site. Analysis of SERRS frequencies and intensities provides information on the nature of the flavin binding site and the planarity of the ring, and enables an interpretation of the hydrogen bonding environment around ring III of the isoalloxazine moiety. Hydrogen bonding is strong at N3–H, C2=O and C4=O, but weak at N5. Structural alteration of the FAD domain of P450 BM3 is caused by removal of the FMN-binding domain. Further, the hydrogen bond at N3–H is lost and that at C2=O is weakened and the isoalloxazine ring system in the FAD domain appears to adopt a more planar arrangement. Alterations in the environment of the FAD in its isolated domain are likely to relate to changes in the redox properties and suggest a close structural interplay of FAD with the FMN-binding domain in intact flavocytochrome P450 BM3. Received: 5 August 1998 / Revised version: 11 February 1999 / Accepted: 15 February 1999  相似文献   

4.
Transfer of reducing equivalents from NADPH to the cytochromes P450 is mediated by NADPH-cytochrome P450 oxidoreductase, which contains stoichiometric amounts of tightly bound FMN and FAD. Hydrogen bonding and van der Waals interactions between FAD and amino acid residues in the FAD binding site of the reductase serve to regulate both flavin binding and reactivity. The precise orientation of key residues (Arg(454), Tyr(456), Cys(472), Gly(488), Thr(491), and Trp(677)) has been defined by x-ray crystallography (Wang, M., Roberts, D. L., Paschke, R., Shea, T. M., Masters, B. S., Kim, J.-J. P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8411-8416). The current study examines the relative contributions of these residues to FAD binding and catalysis by site-directed mutagenesis and kinetic analysis. Mutation of either Tyr(456), which makes van der Waals contact with the FAD isoalloxazine ring and also hydrogen-bonds to the ribityl 4'-hydroxyl, or Arg(454), which bonds to the FAD pyrophosphate, decreases the affinity for FAD 8000- and 25,000-fold, respectively, with corresponding decreases in cytochrome c reductase activity. In contrast, substitution of Thr(491), which also interacts with the pyrophosphate grouping, had a relatively modest effect on both FAD binding (100-fold decrease) and catalytic activity (2-fold decrease), while the G488L mutant exhibited, respectively, 800- and 50-fold decreases in FAD binding and catalytic activity. Enzymic activity of each of these mutants could be restored by addition of FAD. Kinetic properties and the FMN content of these mutants were not affected by these substitutions, with the exception of a 3-fold increase in Y456S K(m)(cyt )(c) and a 70% decrease in R454E FMN content, suggesting that the FMN- and FAD-binding domains are largely, but not completely, independent. Even though Trp(677) is stacked against the re-face of FAD, suggesting an important role in FAD binding, deletion of both Trp(677) and the carboxyl-terminal Ser(678) decreased catalytic activity 50-fold without affecting FAD content.  相似文献   

5.
NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin cofactors, to various cytochrome P450s. The crystal structure of the rat reductase complexed with NADP(+) has revealed that nicotinamide access to FAD is blocked by an aromatic residue (Trp-677), which stacks against the re-face of the isoalloxazine ring of the flavin. To investigate the nature of interactions between the nicotinamide, FAD, and Trp-677 during the catalytic cycle, three mutant proteins were studied by crystallography. The first mutant, W677X, has the last two C-terminal residues, Trp-677 and Ser-678, removed; the second mutant, W677G, retains the C-terminal serine residue. The third mutant has the following three catalytic residues substituted: S457A, C630A, and D675N. In the W677X and W677G structures, the nicotinamide moiety of NADP(+) lies against the FAD isoalloxazine ring with a tilt of approximately 30 degrees between the planes of the two rings. These results, together with the S457A/C630A/D675N structure, allow us to propose a mechanism for hydride transfer regulated by changes in hydrogen bonding and pi-pi interactions between the isoalloxazine ring and either the nicotinamide ring or Trp-677 indole ring. Superimposition of the mutant and wild-type structures shows significant mobility between the two flavin domains of the enzyme. This, together with the high degree of disorder observed in the FMN domain of all three mutant structures, suggests that conformational changes occur during catalysis.  相似文献   

6.
Nitric-oxide synthase (NOS) is composed of a C-terminal, flavin-containing reductase domain and an N-terminal, heme-containing oxidase domain. The reductase domain, similar to NADPH-cytochrome P450 reductase, can be further divided into two different flavin-containing domains: (a) the N terminus, FMN-containing portion, and (b) the C terminus FAD- and NADPH-binding portion. The crystal structure of the FAD/NADPH-containing domain of rat neuronal nitric-oxide synthase, complexed with NADP(+), has been determined at 1.9 A resolution. The protein is fully capable of reducing ferricyanide, using NADPH as the electron donor. The overall polypeptide fold of the domain is very similar to that of the corresponding module of NADPH-cytochrome P450 oxidoreductase (CYPOR) and consists of three structural subdomains (from N to C termini): (a) the connecting domain, (b) the FAD-binding domain, and (c) the NADPH-binding domain. A comparison of the structure of the neuronal NOS FAD/NADPH domain and CYPOR reveals the strict conservation of the flavin-binding site, including the tightly bound water molecules, the mode of NADP(+) binding, and the aromatic residue that lies at the re-face of the flavin ring, strongly suggesting that the hydride transfer mechanisms in the two enzymes are very similar. In contrast, the putative FMN domain-binding surface of the NOS protein is less positively charged than that of its CYPOR counterpart, indicating a different nature of interactions between the two flavin domains and a different mode of regulation in electron transfer between the two flavins involving the autoinhibitory element and the C-terminal 33 residues, both of which are absent in CYPOR.  相似文献   

7.
Flavocytochrome P450 BM3 is a member of the diflavin reductase enzyme family. Members include cytochrome P450 reductase, nitric-oxide synthase, methionine synthase reductase, and novel oxidoreductase 1. These enzymes show a strong preference for NADPH over NADH as reducing coenzyme. An aromatic residue stacks over the FAD isoalloxazine ring in each enzyme, and in some cases it is important in controlling coenzyme specificity. In P450 BM3, the aromatic residue inferred from sequence alignments to stack over the FAD is Trp-1046. Mutation to Ala-1046 and His-1046 effected a remarkable coenzyme specificity switch. P450 BM3 W1046A/W106H FAD and reductase domains are efficient NADH-dependent ferricyanide reductases with selectivity coefficients (k(cat)/K(m)(NADPH)/k(cat)/K(m)(NADH)) of 1.5, 67, and 8571 for the W1046A, W1046H, and wild-type reductase domains, respectively. Stopped-flow photodiode array absorption studies indicated a charge-transfer intermediate accumulated in the W1046A FAD domain (and to a lesser extent in the W1046H FAD domain) and was attributed to formation of a reduced FADH(2)-NAD(P)(+) charge-transfer species, suggesting a relatively slow rate of release of NAD(P)(+) from reduced enzymes. Unlike wild-type enzymes, there was no formation of the blue semiquinone species observed during reductive titration of the W0146A/W146H FAD and reductase domains with dithionite or NAD(P)H. This was a consequence of elevation of the semiquinone/hydroquinone couple of the FAD with respect to the oxidized/semiquinone couple, and a concomitant approximately 100-mV elevation in the 2-electron redox couple for the enzyme-bound FAD (-320, -220, and -224 mV in the wild-type, W1046A, and W1046H FAD domains, respectively).  相似文献   

8.
M J Paine  S Ayivor  A Munro  P Tsan  L Y Lian  G C Roberts  C R Wolf 《Biochemistry》2001,40(45):13439-13447
NADPH-cytochrome P450 oxidoreductase (P450 reductase, EC 1.6.2.4) is an essential component of the P450 monooxygenase complex and binds FMN, FAD, and NADPH cofactors. Residues Tyr140 and Tyr178 are known to be involved in FMN binding. A third aromatic side chain, Phe181, is also located in the proximity of the FMN ring and is highly conserved in FMN-binding proteins, suggesting an important functional role. This role has been investigated by site-directed mutagenesis. Substitution of Phe181 with leucine or glutamine decreased the cytochrome c reductase activity of the enzyme by approximately 50%. Ferricyanide reductase activity was unaffected, indicating that the FAD domain was unperturbed. The mutant FMN domains were expressed in Escherichia coli, and the redox potentials and binding energies of their complexes with FMN were determined. The affinity for FMN was decreased approximately 50-fold in the Leu181 and Gln181 mutants. Comparison of the binding energies of the wild-type and mutant enzymes in the three redox states of FMN suggests that Phe181 stabilizes the FMN-apoprotein complex. The amide 1H and 15N resonances of the Phe181Leu FMN domain were assigned; comparison of their chemical shifts with those of the wild-type domain indicated that the effect of the substitution on FMN affinity results from perturbation of two loops which form part of the FMN binding site. The results indicate that Phe181 cooperates with Tyr140 and Tyr178 to play a major role in the binding and stability of FMN.  相似文献   

9.
Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH-cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys(264) interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a approximately 360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala(264) is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in nature.  相似文献   

10.
Two catalytic domains, bearing FMN and FAD cofactors, joined by a connecting domain, compose the core of the NADPH cytochrome P450 reductase (CPR). The FMN domain of CPR mediates electron shuttling from the FAD domain to cytochromes P450. Together, both enzymes form the main mixed‐function oxidase system that participates in the metabolism of endo‐ and xenobiotic compounds in mammals. Available CPR structures show a closed conformation, with the two cofactors in tight proximity, which is consistent with FAD‐to‐FMN, but not FMN‐to‐P450, electron transfer. Here, we report the 2.5 Å resolution crystal structure of a functionally competent yeast–human chimeric CPR in an open conformation, compatible with FMN‐to‐P450 electron transfer. Comparison with closed structures shows a major conformational change separating the FMN and FAD cofactors from 86 Å.  相似文献   

11.
In rat neuronal nitric oxide synthase, Phe1395 is positioned over the FAD isoalloxazine ring. This is replaced by Trp676 in human cytochrome P450 reductase, a tryptophan in related diflavin reductases (e.g. methionine synthase reductase and novel reductase 1), and tyrosine in plant ferredoxin-NADP(+) reductase. Trp676 in human cytochrome P450 reductase is conformationally mobile, and plays a key role in enzyme reduction. Mutagenesis of Trp676 to alanine results in a functional NADH-dependent reductase. Herein, we describe studies of rat neuronal nitric oxide synthase FAD domains, in which the aromatic shielding residue Phe1395 is replaced by tryptophan, alanine and serine. In steady-state assays the F1395A and F1395S domains have a greater preference for NADH compared with F1395W and wild-type. Stopped-flow studies indicate flavin reduction by NADH is significantly faster with F1395S and F1395A domains, suggesting that this contributes to altered preference in coenzyme specificity. Unlike cytochrome P450 reductase, the switch in coenzyme specificity is not attributed to differential binding of NADPH and NADH, but probably results from improved geometry for hydride transfer in the F1395S- and F1395A-NADH complexes. Potentiometry indicates that the substitutions do not significantly perturb thermodynamic properties of the FAD, although considerable changes in electronic absorption properties are observed in oxidized F1395A and F1395S, consistent with changes in hydrophobicity of the flavin environment. In wild-type and F1395W FAD domains, prolonged incubation with NADPH results in development of the neutral blue semiquinone FAD species. This reaction is suppressed in the mutant FAD domains lacking the shielding aromatic residue.  相似文献   

12.
To investigate the contribution of tryptophan-121 (Trp121) residue to the structure and function of soluble CuA domain of cytochrome c oxidase, three mutant proteins, Trp121Tyr, Trp121Leu and Trp121-deleted mutant of the soluble domain of Paracoccus versutus cytochrome c oxidase, were constructed and expressed in Escherichia coli BL21 (DE3). Optical spectral studies showed that both the coordination structure of the CuA center and the secondary structure of the protein were changed significantly in the Leu substitution and deletion mutants of Trp121. Their electron transfer activity with cytochrome c was inhibited severely, as shown in stopped-flow kinetic studies. However, the CuA center can be reconstructed in the Trp121Tyr mutant although its stability decreases compared with the wild-type protein. This mutant keeps the same secondary structure as the wild-type protein, but can only transfer electrons with cytochrome c at a rate of one-seventh-fold. Based on the information on the structure, we also investigated and analyzed the possible factors that affect electron transfer. It appears that the aromatic ring, the size of the side chain and the hydrogen bonding ability of the Trp121 are crucial to the structure and function of the soluble CuA domain.  相似文献   

13.
The side chain of Gln143, a conserved residue in manganese superoxide dismutase (MnSOD), forms a hydrogen bond with the manganese-bound solvent and is critical in maintaining catalytic activity. The side chains of Tyr34 and Trp123 form hydrogen bonds with the carboxamide of Gln143. We have replaced Tyr34 and Trp123 with Phe in single and double mutants of human MnSOD and measured their catalytic activity by stopped-flow spectrophotometry and pulse radiolysis. The replacements of these side chains inhibited steps in the catalysis as much as 50-fold; in addition, they altered the gating between catalysis and formation of a peroxide complex to yield a more product-inhibited enzyme. The replacement of both Tyr34 and Trp123 in a double mutant showed that these two residues interact cooperatively in maintaining catalytic activity. The crystal structure of Y34F/W123F human MnSOD at 1.95 A resolution suggests that this effect is not related to a conformational change in the side chain of Gln143, which does not change orientation in Y34F/W123F, but rather to more subtle electronic effects due to the loss of hydrogen bonding to the carboxamide side chain of Gln143. Wild-type MnSOD containing Trp123 and Tyr34 has approximately the same thermal stability compared with mutants containing Phe at these positions, suggesting the hydrogen bonds formed by these residues have functional rather than structural roles.  相似文献   

14.
Phe161 and Arg166 of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens belong to a newly discovered sequence motif in flavoprotein hydroxylases with a putative dual function in FAD and NADPH binding [1]. To study their role in more detail, Phe161 and Arg166 were selectively changed by site-directed mutagenesis. F161A and F161G are catalytically competent enzymes having a rather poor affinity for NADPH. The catalytic properties of R166K are similar to those of the native enzyme. R166S and R166E show impaired NADPH binding and R166E has lost the ability to bind FAD. The crystal structure of substrate complexed F161A at 2.2 A is indistinguishable from the native enzyme, except for small changes at the site of mutation. The crystal structure of substrate complexed R166S at 2.0 A revealed that Arg166 is important for providing an intimate contact between the FAD binding domain and a long excursion of the substrate binding domain. It is proposed that this interaction is essential for structural stability and for the recognition of the pyrophosphate moiety of NADPH.  相似文献   

15.
The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)‐dependent thioredoxin reductase (NTR) in a multistep transfer of reducing equivalents from NADPH to Trx via a tightly NTR‐bound flavin. Here, interactions between NTR and Trx are predicted by molecular modelling of the barley NTR:Trx complex (HvNTR2:HvTrxh2) and probed by site directed mutagenesis. Enzyme kinetics analysis reveals mutants in a loop of the flavin adenine dinucleotide (FAD)‐binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent on these two residues, suggesting a distinct mode for NTR:Trx recognition. Comparison between the HvNTR2:HvTrxh2 model and the crystal structure of the Escherichia coli NTR:Trx complex reveals major differences in interactions involving the FAD‐ and NADPH‐binding domains as supported by our experiments. Overall, the findings suggest that NTR:Trx interactions in different biological systems are fine‐tuned by multiple intermolecular contacts. Proteins 2014; 82:607–619. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
CYP107W1 from Streptomyces avermitilis is a cytochrome P450 enzyme involved in the biosynthesis of macrolide oligomycin A. A previous study reported that CYP107W1 regioselectively hydroxylated C12 of oligomycin C to produce oligomycin A, and the crystal structure of ligand free CYP107W1 was determined. Here, we analyzed the structural properties of the CYP107W1-oligomycin A complex and characterized the functional role of the Trp178 residue in CYP107W1. The crystal structure of the CYP107W1 complex with oligomycin A was determined at a resolution of 2.6 Å. Oligomycin A is bound in the substrate access channel on the upper side of the prosthetic heme mainly by hydrophobic interactions. In particular, the Trp178 residue in the active site intercalates into the large macrolide ring, thereby guiding the substrate into the correct binding orientation for a productive P450 reaction. A Trp178 to Gly mutation resulted in the distortion of binding titration spectra with oligomycin A, whereas binding spectra with azoles were not affected. The Gly178 mutant’s catalytic turnover number for the 12-hydroxylation reaction of oligomycin C was highly reduced. These results indicate that Trp178, located in the open pocket of the active site, may be a critical residue for the productive binding conformation of large macrolide substrates.  相似文献   

17.
Murataliev MB  Feyereisen R 《Biochemistry》2000,39(41):12699-12707
NADP(H) binding is essential for fast electron transfer through the flavoprotein domain of the fusion protein P450BM3. Here we characterize the interaction of NADP(H) with the oxidized and partially reduced enzyme and the effect of this interaction on the redox properties of flavin cofactors and electron transfer. Measurements by three different approaches demonstrated a relatively low affinity of oxidized P450BM3 for NADP(+), with a K(d) of about 10 microM. NADPH binding is also relatively weak (K(d) approximately 10 microM), but the affinity increases manyfold upon hydride ion transfer so that the active 2-electron reduced enzyme binds NADP(+) with a K(d) in the submicromolar range. NADP(H) binding induces conformational changes of the protein as demonstrated by tryptophan fluorescence quenching. Fluorescence quenching indicated preferential binding of NADPH by oxidized P450BM3, while no catalytically competent binding with reduced P450BM3 could be detected. The hydride ion transfer step, as well as the interflavin electron transfer steps, is readily reversible, as demonstrated by a hydride ion exchange (transhydrogenase) reaction between NADPH and NADP(+) or their analogues. Experiments with FMN-free mutants demonstrated that FAD is the only flavin cofactor required for the transhydrogenase activity. The equilibrium constants of each electron transfer step of the flavoprotein domain during catalytic turnover have been calculated. The values obtained differ from those calculated from equilibrium redox potentials by as much as 2 orders of magnitude. The differences result from the enzyme's interaction with NADP(H).  相似文献   

18.
NADPH-cytochrome P450 reductase (CPR), a diflavin reductase, plays a key role in the mammalian P450 mono-oxygenase system. In its crystal structure, the two flavins are close together, positioned for interflavin electron transfer but not for electron transfer to cytochrome P450. A number of lines of evidence suggest that domain motion is important in the action of the enzyme. We report NMR and small-angle x-ray scattering experiments addressing directly the question of domain organization in human CPR. Comparison of the 1H-15N heteronuclear single quantum correlation spectrum of CPR with that of the isolated FMN domain permitted identification of residues in the FMN domain whose environment differs in the two situations. These include several residues that are solvent-exposed in the CPR crystal structure, indicating the existence of a second conformation in which the FMN domain is involved in a different interdomain interface. Small-angle x-ray scattering experiments showed that oxidized and NADPH-reduced CPRs have different overall shapes. The scattering curve of the reduced enzyme can be adequately explained by the crystal structure, whereas analysis of the data for the oxidized enzyme indicates that it exists as a mixture of approximately equal amounts of two conformations, one consistent with the crystal structure and one a more extended structure consistent with that inferred from the NMR data. The correlation between the effects of adenosine 2′,5′-bisphosphate and NADPH on the scattering curve and their effects on the rate of interflavin electron transfer suggests that this conformational equilibrium is physiologically relevant.  相似文献   

19.
Bacillus megaterium P450 BM3 (BM3) is a P450/P450 reductase fusion enzyme, where the dimer is considered the active form in NADPH-dependent fatty acid hydroxylation. The BM3 W1046A mutant was generated, removing an aromatic “shield” from its FAD isoalloxazine ring. W1046A BM3 is a catalytically active NADH-dependent lauric acid hydroxylase, with product formation slightly superior to the NADPH-driven enzyme. The W1046A BM3 Km for NADH is 20-fold lower than wild-type BM3, and catalytic efficiency of W1046A BM3 with NADH and NADPH are similar in lauric acid oxidation. Wild-type BM3 also catalyzes NADH-dependent lauric acid hydroxylation, but less efficiently than W1046A BM3. A hypothesis that W1046A BM3 is inactive [15] helped underpin a model of electron transfer from FAD in one BM3 monomer to FMN in the other in order to drive fatty acid hydroxylation in native BM3. Our data showing W1046A BM3 is a functional fatty acid hydroxylase are consistent instead with a BM3 catalytic model involving electron transfer within a reductase monomer, and from FMN of one monomer to heme of the other [12]. W1046A BM3 is an efficient NADH-utilizing fatty acid hydroxylase with potential biotechnological applications.  相似文献   

20.
Escherichia coli NADPH-sulfite reductase (SiR) is a 780 kDa multimeric hemoflavoprotein composed of eight alpha-subunits (SiR-FP) and four beta-subunits (SiR-HP) that catalyses the six electron reduction of sulfite to sulfide. Each beta-subunit contains a Fe4S4 cluster and a siroheme, and each alpha-subunit binds one FAD and one FMN as prosthetic groups. The FAD gets electrons from NADPH, and the FMN transfers the electrons to the metal centers of the beta-subunit for sulfite reduction. We report here the 1.94 A X-ray structure of SiR-FP60, a recombinant monomeric fragment of SiR-FP that binds both FAD and FMN and retains the catalytic properties of the native protein. The structure can be divided into three domains. The carboxy-terminal part of the enzyme is composed of an antiparallel beta-barrel which binds the FAD, and a variant of the classical pyridine dinucleotide binding fold which binds NADPH. These two domains form the canonic FNR-like module, typical of the ferredoxin NADP+ reductase family. By analogy with the structure of the cytochrome P450 reductase, the third domain, composed of seven alpha-helices, is supposed to connect the FNR-like module to the N-terminal flavodoxine-like module. In four different crystal forms, the FMN-binding module is absent from electron density maps, although mass spectroscopy, amino acid sequencing and activity experiments carried out on dissolved crystals indicate that a functional module is present in the protein. Our results clearly indicate that the interaction between the FNR-like and the FMN-like modules displays lower affinity than in the case of cytochrome P450 reductase. The flexibility of the FMN-binding domain may be related, as observed in the case of cytochrome bc1, to a domain reorganisation in the course of electron transfer. Thus, a movement of the FMN-binding domain relative to the rest of the enzyme may be a requirement for its optimal positioning relative to both the FNR-like module and the beta-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号