首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nontuberculous mycobacteria (NTM) are ubiquitous and have been isolated from a variety of environmental sources, including water. Various NTM were isolated from biofilms in drinking water distribution systems in two urban and two semiurban areas in South Africa. Most of the isolates belonged to opportunistic pathogenic species of the NTM group, but none belonged to the Mycobacterium avium complex.  相似文献   

2.
Ginige MP  Wylie J  Plumb J 《Biofouling》2011,27(2):151-163
Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05 mg l(-1)) and Mn (0.02 mg l(-1)) concentrations and the remaining four were exposed to a higher (0.3 and 0.4 mg l(-1) for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0 mg l(-1) of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (~1.5 ng cm(-2) ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall biofilms due to cell death or flow dynamics could release the entrapped Fe and Mn into the bulk water, which could lead to a discoloured water event. Hence, managing biofilm growth on drinking water pipelines should be considered by water utilities to minimize accumulation of Fe and Mn in distribution networks.  相似文献   

3.
The frequency of recovery of atypical mycobacteria was estimated in two treatment plants providing drinking water to Paris, France, at some intermediate stages of treatment. The two plants use two different filtration processes, rapid and slow sand filtration. Our results suggest that slow sand filtration is more efficient for removing mycobacteria than rapid sand filtration. In addition, our results show that mycobacteria can colonize and grow on granular activated carbon and are able to enter distribution systems. We also investigated the frequency of recovery of mycobacteria in the water distribution system of Paris (outside buildings). The mycobacterial species isolated from the Paris drinking water distribution system are different from those isolated from the water leaving the treatment plants. Saprophytic mycobacteria (present in 41.3% of positive samples), potentially pathogenic mycobacteria (16.3%), and unidentifiable mycobacteria (54.8%) were isolated from 12 sites within the Paris water distribution system. Mycobacterium gordonae was preferentially recovered from treated surface water, whereas Mycobacterium nonchromogenicum was preferentially recovered from groundwater. No significant correlations were found among the presence of mycobacteria, the origin of water, and water temperature.  相似文献   

4.
Aims:  To develop a PCR-based tracking method for the detection of a subset of bacteria in drinking water distribution systems capable of degrading haloacetic acids (HAAs).
Methods and Results:  Published degenerate PCR primers were used to determine that 54% of tap water samples (7/13) were positive for a deh gene, indicating that drinking water distribution systems may harbour bacteria capable of HAA degradation. As the published primer sets were not sufficiently specific for quantitative PCR, new primers were designed to amplify deh II genes from selected indicator strains. The developed primer sets were effective in directly amplifying deh II genes from enriched consortia samples, and the DNA extracted from tap water provided that an additional nested PCR step for detection of the deh II gene was used.
Conclusions:  This study demonstrates that drinking water distribution systems harbour microbes capable of degrading HAAs. In addition, a quantitative PCR method was developed to detect and quantify deh II genes in drinking water systems.
Significance and Impact of the Study:  The development of a technique to rapidly screen for the presence of dehalogenase genes in drinking water distribution systems could help water utilities determine if HAA biodegradation is occurring in the distribution system.  相似文献   

5.
Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a ‘core-satellite'' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.  相似文献   

6.
The presence of bacteriophages infecting enteric bacteria was tested in more than 1500 drinking water samples in Israel and Spain. Bacteriophages tested were somatic coliphages, F-specific bacteriophages and Bacteroides fragilis bacteriophages. The three groups of bacteriophage were isolated in 100 ml water samples by the presence/absence test with similar frequencies, which ranged from 4·4% for somatic coliphages to 6·1% for bacteriophages infecting Bact. fragilis. In contrast, the frequency of isolation of bacteriophages was significantly higher than the frequency of isolation of faecal coliforms, which averaged only 1·9%. No significant differences were observed between the frequencies of isolation between the samples tested in Spain and those tested in Israel. The percentage of groundwater samples containing faecal coliforms and somatic coliphages was reduced significantly by chlorination, despite known deficiencies. However, there was no effect on the occurrence of F-specific bacteriophages and Bact. fragilis bacteriophages.  相似文献   

7.
The formation of biofilms in drinking water distribution networks is a significant technical, aesthetic and hygienic problem. In this study, the effects of assimilable organic carbon, microbially available phosphorus (MAP), residual chlorine, temperature and corrosion products on the formation of biofilms were studied in two full-scale water supply systems in Finland and Latvia. Biofilm collectors consisting of polyvinyl chloride pipes were installed in several waterworks and distribution networks, which were supplied with chemically precipitated surface waters and groundwater from different sources. During a 1-year study, the biofilm density was measured by heterotrophic plate counts on R2A-agar, acridine orange direct counting and ATP-analyses. A moderate level of residual chorine decreased biofilm density, whereas an increase of MAP in water and accumulated cast iron corrosion products significantly increased biofilm density. This work confirms, in a full-scale distribution system in Finland and Latvia, our earlier in vitro finding that biofilm formation is affected by the availability of phosphorus in drinking water.  相似文献   

8.
The ability of Mycobacterium xenopi to colonize an experimental drinking water distribution system (a Propella reactor) was investigated. M. xenopi was present in the biofilm within an hour following its introduction. After 9 weeks, it was always present in the outlet water (1 to 10 CFU 100 ml(-1)) and inside the biofilm (10(2) to 10(3) CFU cm(-2)). Biofilms may be considered reservoirs for the survival of M. xenopi.  相似文献   

9.
The growth of environmental and clinical coliform bacteria under conditions typical of drinking water distribution systems was examined. Four coliforms (Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes, and Enterobacter cloacae) were isolated from an operating drinking water system for study; an enterotoxigenic E. coli strain and clinical isolates of K. pneumoniae and E. coli were also used. All but one of the coliforms tested were capable of growth in unsupplemented mineral salts medium; the environmental isolates had greater specific growth rates than did the clinical isolates. This trend was maintained when the organisms were grown with low levels (less than 1 mg liter-1) of yeast extract. The environmental K. pneumoniae isolate had a greater yield, higher specific growth rates, and a lower Ks value than the other organisms. The environmental E. coli and the enterotoxigenic E. coli strains had comparable yield, growth rate, and Ks values to those of the environmental K. pneumoniae strain, and all three showed significantly more successful growth than the clinical isolates. The environmental coliforms also grew well at low temperatures on low concentrations of yeast extract. Unsupplemented distribution water from the collaborating utility supported the growth of the environmental isolates. Growth of the K. pneumoniae water isolate was stimulated by the addition of autoclaved biofilm but not by tubercle material. These findings indicate that growth of environmental coliforms is possible under the conditions found in operating municipal drinking water systems and that these bacteria could be used in tests to determine assimilable organic carbon in potable water.  相似文献   

10.
The growth of environmental and clinical coliform bacteria under conditions typical of drinking water distribution systems was examined. Four coliforms (Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes, and Enterobacter cloacae) were isolated from an operating drinking water system for study; an enterotoxigenic E. coli strain and clinical isolates of K. pneumoniae and E. coli were also used. All but one of the coliforms tested were capable of growth in unsupplemented mineral salts medium; the environmental isolates had greater specific growth rates than did the clinical isolates. This trend was maintained when the organisms were grown with low levels (less than 1 mg liter-1) of yeast extract. The environmental K. pneumoniae isolate had a greater yield, higher specific growth rates, and a lower Ks value than the other organisms. The environmental E. coli and the enterotoxigenic E. coli strains had comparable yield, growth rate, and Ks values to those of the environmental K. pneumoniae strain, and all three showed significantly more successful growth than the clinical isolates. The environmental coliforms also grew well at low temperatures on low concentrations of yeast extract. Unsupplemented distribution water from the collaborating utility supported the growth of the environmental isolates. Growth of the K. pneumoniae water isolate was stimulated by the addition of autoclaved biofilm but not by tubercle material. These findings indicate that growth of environmental coliforms is possible under the conditions found in operating municipal drinking water systems and that these bacteria could be used in tests to determine assimilable organic carbon in potable water.  相似文献   

11.
12.
The Aeromonas populations in 13 Swedish drinking water distribution systems, representing different treatments, were investigated. From each system, water samples were collected four times during the period from May to September 1994 from raw water and water after treatment and at two to five sites within the distribution system. In total, 220 water samples were collected. From samples containing presumptive Aeromonas, up to 32 colonies were analyzed by the PhenePlate Aeromonas (PhP-AE) system, which is a highly discriminating biochemical fingerprinting method. Selected isolates from different phenotypes (PhP types) were further identified by the API 20 NE system and by gas-liquid chromatography analysis of fatty acid methyl esters (FAMEs). Selected isolates were also assayed for their potential to produce hemolysin and cytotoxin and for their ability to adhere to human intestinal cells. In total, 117 water samples (53%) contained presumptive Aeromonas which numbered up to 10(6) CFU/100 ml in raw water and up to 750 CFU/100 ml in tap water. Among the 2,117 isolates that were subjected to typing by the PhP-AE system, more than 300 distinct PhP types were found, of which the majority occurred only sporadically. Raw (surface) water samples usually contained many different PhP types, showing high diversity indices (Di) (median Di = 0.95). The Aeromonas populations in samples collected from within the distribution systems were less diverse (median Di = 0.58) and were often dominated by one major PhP type that was found on several sampling occasions. Seventeen such major PhP types could be found and were represented in 1,037 isolates (49%). Identification by API 20 NE and FAME analysis revealed that most of the major PhP types were Aeromonas hydrophila or belonged to unidentified Aeromonas species. Hemolysin and cytotoxin production was observed in most major PhP types (representing 87 and 54% of the assayed isolates, respectively), and adherence was found in 89% of the isolates that produced cytotoxin. Thus, the data presented here show that although raw water may contain very diverse Aeromonas populations, the populations seemed to be remarkably stable within the studied water distribution systems, and that some potentially pathogenic Aeromonas strains could persist for several months in drinking water.  相似文献   

13.
14.
Drinking water distribution systems were analyzed for viable counts of mycobacteria by sampling water from waterworks and in different parts of the systems. In addition, loose deposits collected during mechanical cleaning of the main pipelines were similarly analyzed. The study covered 16 systems at eight localities in Finland. In an experimental study, mycobacterial colonization of biofilms on polyvinyl chloride tubes in a system was studied. The isolation frequency of mycobacteria increased from 35% at the waterworks to 80% in the system, and the number of mycobacteria in the positive samples increased from 15 to 140 CFU/liter, respectively. Mycobacteria were isolated from all 11 deposits with an accumulation time of tens of years and from all 4 deposits which had accumulated during a 1-year follow-up time. The numbers of mycobacteria were high in both old and young deposits (medians, 1.8 x 10(5) and 3.9 x 10(5) CFU/g [dry weight], respectively). Both water and deposit samples yielded the highest numbers of mycobacteria in the systems using surface water and applying ozonation as an intermediate treatment or posttreatment. The number and growth of mycobacteria in system waters correlated strongly with the concentration of assimilable organic carbon in the water leaving the waterworks. The densities of mycobacteria in the developing biofilms were highest at the distal sites of the systems. Over 90% of the mycobacteria isolated from water and deposits belonged to Mycobacterium lentiflavum, M. tusciae, M. gordonae, and a previously unclassified group of mycobacteria. Our results indicate that drinking water systems may be a source for recently discovered new mycobacterial species.  相似文献   

15.
The Aeromonas populations in 13 Swedish drinking water distribution systems, representing different treatments, were investigated. From each system, water samples were collected four times during the period from May to September 1994 from raw water and water after treatment and at two to five sites within the distribution system. In total, 220 water samples were collected. From samples containing presumptive Aeromonas, up to 32 colonies were analyzed by the PhenePlate Aeromonas (PhP-AE) system, which is a highly discriminating biochemical fingerprinting method. Selected isolates from different phenotypes (PhP types) were further identified by the API 20 NE system and by gas-liquid chromatography analysis of fatty acid methyl esters (FAMEs). Selected isolates were also assayed for their potential to produce hemolysin and cytotoxin and for their ability to adhere to human intestinal cells. In total, 117 water samples (53%) contained presumptive Aeromonas which numbered up to 10(6) CFU/100 ml in raw water and up to 750 CFU/100 ml in tap water. Among the 2,117 isolates that were subjected to typing by the PhP-AE system, more than 300 distinct PhP types were found, of which the majority occurred only sporadically. Raw (surface) water samples usually contained many different PhP types, showing high diversity indices (Di) (median Di = 0.95). The Aeromonas populations in samples collected from within the distribution systems were less diverse (median Di = 0.58) and were often dominated by one major PhP type that was found on several sampling occasions. Seventeen such major PhP types could be found and were represented in 1,037 isolates (49%). Identification by API 20 NE and FAME analysis revealed that most of the major PhP types were Aeromonas hydrophila or belonged to unidentified Aeromonas species. Hemolysin and cytotoxin production was observed in most major PhP types (representing 87 and 54% of the assayed isolates, respectively), and adherence was found in 89% of the isolates that produced cytotoxin. Thus, the data presented here show that although raw water may contain very diverse Aeromonas populations, the populations seemed to be remarkably stable within the studied water distribution systems, and that some potentially pathogenic Aeromonas strains could persist for several months in drinking water.  相似文献   

16.
AIMS: To characterize the composition of microbial populations in a distribution system simulator (DSS) by direct sequence analysis of 16S rDNA clone libraries. METHODS AND RESULTS: Bacterial populations were examined in chlorinated distribution water and chloraminated DSS feed and discharge water. Bacterial strains isolated from DSS discharge water on R2A medium were identified using 16S rDNA sequence analysis. The majority of the bacteria identified were alpha-proteobacteria, ranging from approx. 34% in the DSS discharge water to 94% of the DSS isolates. Species richness estimators Chao1 and ACE (abundance-based coverage estimators) indicated that the chlorinated distribution water sample was representative of the total population diversity, while the chloraminated DSS feed water sample was dominated by Hyphomicrobium sp. sequences. The DSS discharge water contained the greatest diversity of alpha-, beta-, gamma-proteobacteria, with 36% of the sequences being operational taxonomic units (OTUs, sequences with >97.0% homology). CONCLUSIONS: This work demonstrated the dominance of alpha-proteobacteria in distribution system water under two different disinfectant residuals. The shift from chlorine to monochloramine residual may have played a role in bacterial population dynamics. SIGNIFICANCE AND IMPACT OF THE STUDY: Accurate identification of bacteria present in treated drinking water is needed in order to better determine the risk of regrowth of potentially pathogenic organisms within distribution systems.  相似文献   

17.
Fluorescence in situ hybridization (FISH) was used for direct detection of Escherichia coli on pipe surfaces and coupons in drinking water distribution networks. Old cast iron main pipes were removed from water distribution networks in France, England, Portugal, and Latvia, and E. coli was analyzed in the biofilm. In addition, 44 flat coupons made of cast iron, polyvinyl chloride, or stainless steel were placed into and continuously exposed to water on 15 locations of 6 distribution networks in France and Latvia and examined after 1 to 6 months exposure to the drinking water. In order to increase the signal intensity, a peptide nucleic acid (PNA) 15-mer probe was used in the FISH screening for the presence or absence of E. coli on the surface of pipes and coupons, thus reducing occasional problems of autofluorescence and low fluorescence of the labeled bacteria. For comparison, cells were removed from the surfaces and examined with culture-based or enzymatic (detection of beta-d-glucuronidase) methods. An additional verification was made by using PCR. Culture method indicated presence of E. coli in one of five pipes, whereas all pipes were positive with the FISH methods. E. coli was detected in 56% of the coupons using PNA FISH, but no E. coli was detected using culture or enzymatic methods. PCR analyses confirmed the presence of E. coli in samples that were negative according to culture-based and enzymatic methods. The viability of E. coli cells in the samples was demonstrated by the cell elongation after resuscitation in low-nutrient medium supplemented with pipemidic acid, suggesting that the cells were present in an active but nonculturable state, unable to grow on agar media. E. coli contributed to ca. 0.001 to 0.1% of the total bacterial number in the samples. The presence and number of E. coli did not correlate with any of physical and/or chemical characteristic of the drinking water (e.g., temperature, chlorine, or biodegradable organic matter concentration). We show here that E. coli is present in the biofilms of drinking water networks in Europe. Some of the cells are metabolically active but are often not detected due to limitations of traditionally used culture-based methods, indicating that biofilm should be considered as a reservoir that must be investigated further in order to evaluate the risk for human health.  相似文献   

18.
Wang  Yang  Zhang  Xiaojian  Feng  Shuo  Niu  Zhangbin  Chen  Chao 《Annals of microbiology》2009,59(2):353-358
To study the inactivation characteristic of iron bacteria isolated from real drinking water distribution systems and investigate the influence of disinfectants, pH and temperature on inactivation process. Two kinds of iron bacteria were isolated from the water phase in distribution systems and identified asAcinetobacter baumannii andMicrobacterium oxydans. Bench-scale study on inactivation of the two kinds of iron bacteria were carried out, with the impact of disinfectants, pH and temperature under different levels concerned. Free chlorine and monochloramine could achieve an inactivation rate of 99.9% on bothA. Baumannii andM. Oxydans with the CT-value of 10 mg/L·min. Free chlorine was more effective than monochloramine with 1∼2 log higher inactivation rate.Microbacterium oxydans was more resistant to disinfectant thanA. Baumannii. High pH enhanced the inactivation of A.baumannii and low temperature availed the inactivation of bothA. Baumannii andMicrobacterium. For iron bacteria in the water, inactivation ratio could not reach 99% when residual chlorine was 0.05 mg/L in drinking water distribution systems according to Standards for Drinking Water Quality.  相似文献   

19.
20.
Bioprocess and Biosystems Engineering - Biofilms are found at the inner surfaces of drinking water pipes and, therefore, it is essential to understand biofilm processes to control their formation....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号