首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Xie C  Sun J  Qiao W  Lu D  Wei L  Na M  Song Y  Hou X  Lin Z 《PloS one》2011,6(9):e24966
In this study, we examined the effect of chronic administration of simvastatin immediately after status epilepticus (SE) on rat brain with temporal lobe epilepsy (TLE). First, we evaluated cytokines expression at 3 days post KA-lesion in hippocampus and found that simvastatin-treatment suppressed lesion-induced expression of interleukin (IL)-1β and tumor necrosis factor-α (TNF-α). Further, we quantified reactive astrocytosis using glial fibrillary acidic protein (GFAP) staining and neuron loss using Nissl staining in hippocampus at 4-6 months after KA-lesion. We found that simvastatin suppressed reactive astrocytosis demonstrated by a significant decrease in GFAP-positive cells, and attenuated loss of pyramidal neurons in CA3 and interneurons in dentate hilar (DH). We next assessed aberrant mossy fiber sprouting (MFS) that is known to contribute to recurrence of spontaneous seizure in epileptic brain. In contrast to the robust MFS observed in saline-treated animals, the extent of MFS was restrained by simvastatin in epileptic rats. Attenuated MFS was related to decreased neuronal loss in CA3 and DH, which is possibly a mechanism underlying decreased hippocampal susceptibility in animal treated with simvastatin. Electronic encephalography (EEG) was recorded during 4 to 6 months after KA-lesion. The frequency of abnormal spikes in rats with simvastatin-treatment decreased significantly compared to the saline group. In summary, simvastatin treatment suppressed cytokines expression and reactive astrocytosis and decreased the frequency of discharges of epileptic brain, which might be due to the inhibition of MFS in DH. Our study suggests that simvastatin administration might be a possible intervention and promising strategy for preventing SE exacerbating to chronic epilepsy.  相似文献   

2.
The E1 (epileptic) mouse is considered a model for complex partial seizures in humans. Seizures in E1 mice begin around 7-8 weeks of age and persist throughout life. To determine if astrocytic gliosis was present in adult seizing E1 mice, the distribution of glial fibrillary acidic protein (GFAP) was studied in the hippocampus using an antibody to GFAP. The mean number of GFAP-positive cells per square millimeter of hippocampus was approximately 15- to 40-fold higher in adult E1 mice than in nonseizing control C57BL/6J (B6) mice or in young nonseizing E1 mice. Relative GFAP concentration (expressed per milligram of total tissue protein) in hippocampus and cerebellum was estimated by densitometric scanning of peroxidase-stained western blots. GFAP concentration was 2.7-fold greater in hippocampus of adult seizing E1 mice than in the control B6 mice. No differences in GFAP content were detected between the strains in the cerebellum. Because gangliosides can serve as cell surface markers for changes in neuronal cytoarchitecture, they were analyzed to determine if the gliotic response in E1 mice was associated with changes in neural composition. Although the total ganglioside concentration of hippocampus, cerebral cortex, and cerebellum was similar in adult E1 and control B6 mice, a synaptic membrane enriched ganglioside, GD1a, was elevated in the adult E1 cerebral cortex and hippocampus. The findings indicate that E1 mice express a type of gliosis that is not accompanied by obvious neuronal loss.  相似文献   

3.
Glial cells play an important role in normal brain function and emerging evidence would suggest that their dysfunction may be responsible for some epileptic disease states. Neuroimaging of glial cells is desirable, but there are no clear methods to assess neither their function nor localization. Magnetic resonance imaging (MRI) is now part of a standardized epilepsy imaging protocol to assess patients. Structural volumetric and T2-weighted imaging changes can assist in making a positive diagnosis in a majority of patients. The alterations reported in structural and T2 imaging is predominately thought to reflect early neuronal loss followed by glial hypertrophy. MR spectroscopy for myo-inositol is a being pursued to identify glial alterations along with neuronal markers. Diffusion weighted imaging (DWI) is ideal for acute epileptiform events, but is not sensitive to either glial cells or neuronal long-term changes found in epilepsy. However, DWI variants such as diffusion tensor imaging or q-space imaging may shed additional light on aberrant glial function in the future. The sensitivity and specificity of PET radioligands, including those targeting glial cells (translocator protein) hold promise in being able to image glial cells. As the role of glial function/dysfunction in epilepsy becomes more apparent neuroimaging methods will evolve to assist the clinician and researcher in visualizing their location and function.  相似文献   

4.
We investigated the localization of major gangliosides in adultrat brain by an immunofluorescence technique with mouse monoclonalantibodies (MAbs). Five MAbs (GMB16, GMR17, GGR12, GMR5 andGMR13) that specifically recognize gangliosides GM1, GD1a, GD1b,GT1b and GQ1b, respectively, were used. We have found that thereis a cell type-specific expression of the ganglioside in therat central nervous system. In cerebellar cortex, GM1 was expressedin myelin and some glial cells. GD1a was detected exclusivelyin the molecular layer. GD1b and GQ1b were present restrictedlyon the granular layer; GD1b was detected on the surface of thegranular cell bodies, whereas GQ1b was present in the cerebellarglomerulus. GT1b was distributed intensely in both the molecularlayer and the granular layer. In cerebral cortex, GM1 was detectedin some glial cells. Dense staining was limited to the whitematter. GD1a was distributed in layers I, II/III and Va, andthe upper part of layer VI, whereas GQ1b was localized in layersIV and Vb, and the lower part of layer VI. GD1b was detectedbeneath layer III. GT1b appeared to be distributed throughoutall layers. In other regions, such as hippocampal formationand spinal cord, the expression of the ganglioside was alsohighly localized to a specific cell type and layer. ganglioside monoclonal antibody rat brain  相似文献   

5.
Corticosteroids are used in the management of several epileptic aliments; however, their effectiveness in combating seizures remains controversial, with pro- and anti-convulsive effects ascribed. The current study aimed to address the modulatory effect of dexamethasone (DEX) utilizing 3 dose levels (5, 10, and 20 mg/kg body mass of male Wistar rat) in the rat lithium-pilocarpine (Li-PIL) epilepsy model. Li-PIL induced seizures that were associated with neuronal cell loss in the CA3 region, and increased prostaglandin (PG)E(2), tumor necrosis factor (TNF)-α, interleukin (IL)-10, nitric oxide, and neutrophil infiltration in the hippocampus. However, Li-PIL compromised the oxidant-antioxidant balance of the hippocampus. Effective anticonvulsant activity was only observed with 10 mg DEX/kg body mass, which reduced seizure production and incidence, as well as neuronal cell loss in the CA3 region. At this anticonvulsant dose, enhancements in the antioxidant system and IL-10, as well as suppression of altered inflammatory markers were observed. Conversely, doubling the dose showed a tendency to shorten seizure latency, and neither affected seizure incidence nor CA3 neuronal cell loss. These effects were associated with an increase in levels of PGE(2) and TNF-α. The present study found a lack of protection at 5 mg DEX/kg body mass, an anticonvulsant effect at 10 mg/kg, and a loss of protection at 20 mg/kg in the Li-PIL epilepsy model, which indicates that there is an optimal dose of DEX for preventing the induction of seizures.  相似文献   

6.
Mucopolysaccharidosis I (MPS I) is a congenital disorder caused by the deficiency of α-l-iduronidase (IDUA), with the accumulation of glycosaminoglycans (GAGs) in the CNS. Although GAG toxicity is not fully understood, previous works suggest a GAG-induced alteration in neuronal membrane composition. This study is aimed to evaluate the levels and distribution of gangliosides and cholesterol in different brain regions (cortex, cerebellum, hippocampus and hypothalamus) in a model using IDUA knockout (KO) mice (C57BL/6). Lipids were extracted with chloroform–methanol and then total gangliosides and cholesterol were determined, followed by ganglioside profile analyses. While no changes in cholesterol content were observed, the results showed a tissue dependent ganglioside alteration in KO mice: a total ganglioside increase in cortex and cerebellum, and a selective presence of GM3, GM2 and GD3 gangliosides in the hippocampus and hypothalamus. To elucidate this, we evaluated gene expression of ganglioside synthesis (GM3, GD3 and GM2/GD2 synthases) and degradation of (Neuraminidase1) enzymes in the cerebellum and hippocampus by RT-sq-PCR. The results obtained with KO mice showed a reduced expression of GD3 and GM2/GD2 synthases and Neuraminidase1 in cerebellum; and a decrease in GM2/GD2 synthase and Neuraminidase1 in the hippocampus. These data suggest that the observed ganglioside changes result from a combined effect of GAGs on ganglioside biosynthesis and degradation.  相似文献   

7.
Over the last 10 years, accumulated experimental and clinical evidence has supported the idea that AT1 receptor subtype is involved in epilepsy. Recently, we have shown that the selective AT1 receptor antagonist losartan attenuates epileptogenesis and exerts neuroprotection in the CA1 area of the hippocampus in epileptic Wistar rats. This study aimed to verify the efficacy of long-term treatment with losartan (10 mg/kg) after kainate-induced status epilepticus (SE) on seizure activity, behavioral and biochemical changes, and neuronal damage in a model of co-morbid hypertension and epilepsy. Spontaneous seizures were video- and EEG-monitored in spontaneously hypertensive rats (SHRs) for a 16-week period after SE. The behavior was analyzed by open field, elevated plus maze, sugar preference test, and forced swim test. The levels of serotonin in the hippocampus and neuronal loss were estimated by HPLC and hematoxylin and eosin staining, respectively. The AT1 receptor antagonism delayed the onset of seizures and alleviated their frequency and duration during and after discontinuation of treatment. Losartan showed neuroprotection mostly in the CA3 area of the hippocampus and the septo-temporal hilus of the dentate gyrus in SHRs. However, the AT1 receptor antagonist did not exert a substantial influence on concomitant with epilepsy behavioral changes and decreased 5-HT levels in the hippocampus. Our results suggest that the antihypertensive therapy with an AT1 receptor blocker might be effective against seizure activity and neuronal damage in a co-morbid hypertension and epilepsy.  相似文献   

8.
The effect of intracerebroventricular kainate injection on the elemental composition of the hippocampus was studied in adult Wistar rats, at 1 day and 1, 2, 3, and 4 weeks postinjection, using a nuclear microscope. An increase in calcium concentration was observed on the injected side from 1 day postinjection. The increase peaked at 3 weeks postinjection, reaching a concentration of 18 times normal. Large numbers of glial cells but no neurons were observed in the lesioned CA fields at this time, suggesting that an increased calcium level was present in glial cells. This was confirmed by high-resolution elemental maps of the lesioned areas, which showed very high intracellular calcium concentrations in almost all glial cells. It is possible that the high intracellular calcium level could activate calcium-dependent enzymes, including calpain II and cytosolic phospholipase A2, shown to be expressed in reactive glial cells after kainate injections. In addition to calcium, an increase in iron content was also observed at the periphery of the glial scar at 4 weeks postinjection. Because free iron could catalyze the formation of free radicals, the late increase in iron content may be related to oxygen radical formation during neurodegeneration.  相似文献   

9.
Reactive changes in hippocampal astrocytes are frequently encountered in association with temporal lobe epilepsy in humans and with drug or kindling-induced seizures in animal models. These reactive changes generally involve increases in astrocyte size and number and often occur together with neuronal loss and synaptic rearrangements. In addition to producing astrocytic changes, seizure activity can also produce reactive changes in microglia, the resident macrophages of brain. In this study, we examined the effects of recurrent seizure activity on hippocampal neurons and glia in the epileptic EL mouse, a natural model of human multifactorial idiopathic epilepsy and complex partial seizures. Timm staining was used to evaluate infrapyramidal mossy fiber organization and the optical dissector method was used to count Nissl-stained neurons in hippocampus of adult (about one year of age) EL mice and nonepileptic C57BL/6J (B6) and DDY mice. Immunostaining forglial fibrillary acidic protein (GFAP) and Iba1, an actin cross-linking molecule restricted to macrophages and microglia, was used to evaluate astrocytes and microglia, respectively. The EL mice experienced about 25–30 complex partial seizures with secondary generalization during routine weekly cage changing. No significant differences were found among the mouse strains for Timm staining scores or for neuronal counts in the CA1 and CA3 pyramidal fields or in the hilus. However, the number of GFAP-positive astrocytes was significantly elevated in the stratum radiatum and hilus of EL mice, while microglia appeared hyper-ramified and were more intensely stained in EL mice than in the B6 or DDY mice in the hilus, parietal cortex, and pyriform cortex. The results indicate that recurrent seizure activity in EL mice is associated with abnormalities in hippocampal astrocytes and brain microglia, but is not associated with obvious neuronal loss or mossy fiber synaptic rearrangements. The EL mouse can be a useful model for evaluating neuron-glia interactions related to idiopathic epilepsy.  相似文献   

10.
In this study, brain gangliosides in prenatal and postnatal human life were analyzed. Immunohistochemically, the presence of "c"-pathway of gangliosides (GQ1c) in embryonic brain was only recorded at 5 weeks of gestation. Biochemical results indicated a twofold increase in human cortex ganglioside concentration between 16 and 22 weeks of gestation. The increasing ganglioside concentration was based on an increasing GD1a ganglioside fraction in all regions analyzed except cerebellar cortex, which was characterized by increasing GT1b. In this developmental period, GD3 was found to be localized in the ventricular zone of the cortical wall. After birth, GD1b ganglioside in neuropil of granular cell layer corresponding to growing mossy fibers was expressed in cerebellar cortex. Between birth and 20/30 years of age, a cerebral neocortical difference of ganglioside composition was observed, characterized by lowest GD1a in visual cortex. Analyzing the composition of gangliosides in cortical regions during aging, they were observed to follow region-specific alterations. In frontal cortex, there was a greater decrease in GD1a and GM1 than in GT1b and GD1b, but in occipital (visual) cortex there was no change in individual gangliosides. In hippocampus, GD1a moderately decreased, whereas other fractions were stable. In cerebellar cortex, GD1b and GT1b fractions decreased with aging.  相似文献   

11.
To identify and localize the protein products of genes encoding distinct L-type calcium channels in central neurons, anti-peptide antibodies specific for the class C and class D alpha 1 subunits were produced. Anti-CNC1 directed against class C immunoprecipitated 75% of the L-type channels solubilized from rat cerebral cortex and hippocampus. Anti-CND1 directed against class D immunoprecipitated only 20% of the L-type calcium channels. Immunoblotting revealed two size forms of the class C L-type alpha 1 subunit, LC1 and LC2, and two size forms of the class D L-type alpha 1 subunit, LD1 and LD2. The larger isoforms had apparent molecular masses of approximately 200-210 kD while the smaller isoforms were 180-190 kD, as estimated from electrophoresis in gels polymerized from 5% acrylamide. Immunocytochemical studies using CNC1 and CND1 antibodies revealed that the alpha 1 subunits of both L-type calcium channel subtypes are localized mainly in neuronal cell bodies and proximal dendrites. Relatively dense labeling was observed at the base of major dendrites in many neurons. Staining in more distal dendritic regions was faint or undetectable with CND1, while a more significant level of staining of distal dendrites was observed with CNC1, particularly in the dentate gyrus and the CA2 and CA3 areas of the hippocampus. Class C calcium channels were concentrated in clusters, while class D calcium channels were generally distributed in the cell surface membrane of cell bodies and proximal dendrites. Our results demonstrate multiple size forms and differential localization of two subtypes of L-type calcium channels in the cell bodies and proximal dendrites of central neurons. The differential localization and multiple size forms may allow these two channel subtypes to participate in distinct aspects of electrical signal integration and intracellular calcium signaling in neuronal cell bodies. The preferential localization of these calcium channels in cell bodies and proximal dendrites implies their involvement in regulation of calcium-dependent functions occurring in those cellular compartments such as protein phosphorylation, enzyme activity, and gene expression.  相似文献   

12.
为了考察miR-103a对癫痫大鼠海马组织星形胶质细胞活化的影响。本研究通过腹腔注射氯化锂和毛果芸香碱诱导癫痫大鼠模型,对大鼠脑室内注射miR-103a抑制剂来敲低miR-103a的表达;采用免疫组织化学染色检测大鼠海马组织中胶质纤维酸性蛋白(GFAP)的阳性表达;采用RT-qPCR和Western blotting方法检测大鼠海马组织中miR-103a、脑源性神经营养因子(BDNF)、GFAP、TNF-α和IL-6的m RNA和蛋白表达;苏木精-伊红(HE)染色评价海马组织病变程度;Nissl染色检测神经元存活情况;TUNEL染色检测神经元的凋亡。结果显示,癫痫大鼠海马组织中miR-103a被上调。下调miR-103a抑制癫痫大鼠海马组织中GFAP的mRNA和蛋白表达,且抑制癫痫大鼠海马神经元的病理损伤,但能促进癫痫大鼠海马神经元的存活并抑制其凋亡。此外,下调miR-103a还抑制癫痫大鼠海马组织中IL-6和TNF-α的表达,并促进癫痫大鼠海马组织中BDNF的表达。本研究表明,靶向沉默miR-103a可以抑制癫痫大鼠海马组织中星形胶质细胞的活化并改善神经元的病理损伤。  相似文献   

13.
GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy.   总被引:7,自引:0,他引:7  
Mesial temporal lobe epilepsy (MTLE) is the most prevalent form of epilepsy, characterized by recurrent complex partial seizures and hippocampal sclerosis. The pathophysiology underlying this disorder remains unidentified. While a loss of benzodiazepine binding sites is a key diagnostic feature of MTLE, experimental studies have shown enhanced inhibitory transmission and increased expression of GABA(A)-receptors, suggesting that compensatory mechanisms are operative in epileptic hippocampus. In the present study, changes in the expression and cellular distribution of major GABA(A)-receptor subunits were investigated in the hippocampus of pilocarpine-treated rats during the phase of spontaneous recurrent seizures. A uniform decrease in GABA(A)-receptor subunit-immunoreactivity was observed in regions of extensive neuronal death (i.e. CA1, CA3, hilus). whereas a prominent increase occurred in the dentate gyrus (DG). Most strikingly, the increase was largest for the alpha3- and alpha5-subunits, which are expressed at very low levels in the DG of control rats, suggesting the formation of novel GABA(A)-receptor subtypes in epileptic tissue. Furthermore, an extensive loss of interneurons expressing the alpha1-subunit, representing presumptive basket cells, was seen in the DG. These changes were very similar to those reported in a novel mouse model of MTLE, based on the unilateral injection of kainic acid into the dorsal hippocampus (Bouilleret et al., 1999). This indicates that the regulation of GABA(A)-receptor expression is related to chronic recurrent seizures, and is not due to the extrahippocampal neuronal damage affecting pilocarpine-treated rats. These results allow causal relationships in the induction and maintenance of chronic recurrent seizures to be distinguished. The loss of a critical number of interneurons in the DG is a possible cause of seizure initiation, whereas the long-lasting upregulation of GABA(A)-receptors in granule cells represents a compensatory response to seizure activity.  相似文献   

14.
Abstract: The cellular distribution of gangliosides in the cerebellum was studied in a series of adult mouse mutants that lose specific populations of neurons. The weaver ( wv ) mutation destroys the vast majority of granule cells, whereas the Purkinje cell degeneration mutation ( pcd ) destroys the vast majority of Purkinje cells. The staggerer ( sg ) and lurcher ( Lc ) mutations, on the other hand, destroy the vast majority of both granule and Purkinje cells. A proliferation of reactive glial cells, which occurs as a consequence of neuronal loss, has been reported in the sg/sg and pcd/pcd mutants, but not in the wv/wv mutant. Compared with the normal (+/+) mice, the concentration (μg/100 mg dry weight) of GD1a was significantly reduced in those mutants that lost granule cells, but was not reduced in the pcd/pcd mutant. The concentration of GTIa, on the other hand, was significantly reduced in those mutants that lost Purkinje cells, but was not reduced in the wv/wv mutant. A significant elevation in the concentration of GD3, which may be related to the proliferation of reactive glial cells, was observed in the pcd/pcd, sglsg , and Lc /+ mutants, but was not observed in the wv/wv mutant. Because these ganglioside abnormalities were confined to the cerebellum, they cannot result from genetic defects in ganglioside metabolism. Instead, these abnormalities result from a differential enrichment of gangliosides in neural membranes. Our findings suggest that GDT1a is more heavily concentrated in granule cells than Purkinje cells, whereas the opposite appears true for GTla. It also appears that GD3 is enriched in reactive glial cells and may play an important role during the morphological transformation of neural membranes.  相似文献   

15.
蝎毒对癫痫敏感性和海马GFAP释放的影响   总被引:10,自引:2,他引:8  
目的和方法 :本工作用海人酸癫痫模型 ,通过对癫痫大鼠蝎毒治疗后行为变化及脑内胶质原纤维酸性蛋白(GFAP)免疫反应活性的检测 ,对蝎毒抗癫痫反复发作的相关脑区及其机制做以初步探讨。结果 :癫痫大鼠蝎毒治疗三周后 ,能明显减少癫痫发作的例数 ,减轻癫痫发作的程度 ,使发作的潜伏期延长 (P <0 .0 5 )。免疫细胞化学的实验显示 ,蝎毒抗癫痫反复发作的相关脑区是海马。 8例蝎毒治疗的大鼠与实验对照组相比 ,有 6例背侧海马GFAP免疫染色明显减轻 ,未见星形胶质细胞增生 ;CA1区无明显神经元缺失 ;而且与空白对照组相比无显著差异。结论 :癫痫大鼠蝎毒治疗三周后 ,能明显减轻癫痫发作的行为 ,抑制海马星形胶质细胞的增生肥大 ,减轻海马神经元受损的程度。蝎毒抑制海马星形胶质细胞增生很可能是蝎毒抗癫痫反复发作的重要机制之一。  相似文献   

16.
The ganglioside patterns of cerebellum, cortex, pons-medulla, hypothalamus, hippocampus and caudate nucleus of three inbred strains of mice (C57BL/6J, DBA/2J and BALB/cJ) have been analysed. All brain areas contained both the simple and complex species of gangliosides. GD1a was the major ganglioside in cortex, hippocampus and caudate nucleus whereas GT1b was the major species in cerebellum, hypothalamus and pons-medulla. In hippocampus, the percentages of GT1b and GD1a were quite similar. Pons and medulla exhibited the highest levels of GM1 (which approaches the value of GT1b) and the lowest values of GD1a. A ganglioside, termed here GT1L, was located between GD1b and GT1b. This ganglioside, which was present in highest amounts in cerebellum disappeared after alkali treatment. Highly significant differences were observed in the amounts and patterns of gangliosides among brain areas of the three strains. Highly significant differences (p<0.001) were also found in the ganglioside distribution of various brain areas among the strains, especially for tri-and tetrasialogangliosides between Balb and DBA. A significant difference of GM1 was observed in the cerebellum when comparing DBA with the two other strains. It is likely that the differences might be related to their relative abundances in certain cell types and for defining synaptic circuits in brain areas of some strains.  相似文献   

17.
Involvement of p38alpha in kainate-induced seizure and neuronal cell damage   总被引:2,自引:0,他引:2  
We investigated how p38alpha mitogen-activated protein kinase (p38) is related to kainate-induced epilepsy and neuronal damages, by using the mice with a single copy disruption of the p38 alpha gene (p38alpha(+/-)). Mortality rate and seizure score of p38alpha(+/-) mice administered with kainate were significantly reduced compared with the case of wild-type (WT) mice. This was clearly supported by the electroencephalography data in which kainate-induced seizure duration and frequency in the brain of p38alpha(+/-) mice were significantly suppressed compared to those of WT mice. As a consequence of seizure, kainate induced delayed neuronal damages in parallel with astrocytic growth in the hippocampus and ectopic innervation of the mossy fibers into the stratum oriens in the CA3 region of hippocampus in WT mice, whose changes were moderate in p38alpha(+/-) mice. Likewise, kainate-induced phosphorylation of calcium/calmodulin-dependent kinase II in the hippocampus of p38alpha (+/-) mice was significantly decreased compared to that of WT mice. These results suggest that p38alpha signaling pathway plays an important role in epileptic seizure and excitotoxicity.  相似文献   

18.
To investigate the effectiveness of nasal delivery of levetiracetam (LEV) on the distributions of synaptic vesicle protein 2 isoform A (SV2A) in epileptic rats with injection of kainic acid (KA) into amygdala. A total of 138 rats were randomly divided into four groups, including the Sham surgery group, the epilepsy group (EP), and the LEV oral administration (LPO) and nasal delivery (LND) groups. The rat intra-amygdala KA model of epilepsy was constructed. Pathological changes of rat brain tissue after status epilepticus (SE) were detected using haematoxylin and eosin staining. Expression of SV2A in rat hippocampus after SE was evaluated using the western blotting analysis. Expression and distribution of SV2A in rat hippocampus after SE were detected based on immunofluorescence staining. The EP group showed evident cell loss and tissue necrosis in the CA3 area of hippocampus, whereas the tissue damage in both LPO and LND groups was significantly reduced. Western blotting analysis showed that the expressions of SV2A in the hippocampus of both EP and LND groups were significantly decreased 1 week after SE, increased to the similar levels of the Sham group in 2 weeks, and continuously increased 4 weeks after SE to the level significantly higher than that of the Sham group. Results of immunofluorescence revealed largely the same expression patterns of SV2A in the CA3 area of hippocampus as those in the entire hippocampus. Our study revealed the same antiepileptic and neuronal protective effects by the nasal and oral administrations of LEV, without changing the expression level of SV2A.  相似文献   

19.
The present study showed CCR7, CCR8, CCR9 and CCR10 in the normal Swiss mouse hippocampus at both protein and mRNA levels. CCR7, CCR9 and CCR10 were mainly localized in hippocampal principal cells and some interneurons. CCR9 was also found in the mossy fibres and/or terminals, suggesting an axonal or presynaptic localization, and CCR10 in apical dendrites of pyramidal neurons in the CA1 area. CCR8 was observed in interneurons. Double-labelling immunocytochemistry revealed that most of calbindin (CB)-, calretinin (CR)- and parvalbumin (PV)-immunopositive neurons expressed CCR7-10, except CR-immunopositive cells in which only 10 to 12% expressed CCR8. During and after pilocarpine-induced status epilepticus, progressive changes of each of CCR7, CCR8, CCR9 and CCR10 proteins occurred in different patterns at various time points. Sensitive real-time PCR showed similar change patterns at mRNA level. At the chronic stage, i.e. at 2 months after pilocarpine-induced status epilepticus, significant reduction of CCR7-10 expression in CB-, CR- and PV-immunpositive interneurons may suggest the phenotype change of surviving interneurons. Double labelling of CCR7, CCR8 and CCR9 with glial fibrillary acidic protein (GFAP) at the chronic stage may suggest an induced expression in reactive astrocytes. The present study may, therefore, for the first time, provide evidence that CCR7-10 may be involved in normal hippocampal activity. The demonstration of the progressive changes of CCR7-10 during and after status epilepticus may open a new area to reveal the mechanism of neuronal loss after status epilepticus and of epileptogenesis.  相似文献   

20.
The distribution of cerebellar gangliosides was studied in staggerer (sg/sg) mutant mice, where the majority of granule cells die after completing their migration across the molecular layer. In addition, the external granule cell layer in sg/sg mice persists longer than in normal mice. Moreover, in the sg/sg cerebellum, Purkinje cells are significantly reduced in number, and almost none have tertiary branchlet spines. The loss of Purkinje cells and granule cells in sg/sg mice is accompanied by an early-onset reactive gliosis that continues through adulthood. By correlating changes in ganglioside composition with the well-documented histological events of cerebellar development in normal and sg/sg mice, we obtained strong evidence for a nonrandom cellular distribution of gangliosides. The sharpest reduction in the GD1a content of sg/sg cerebellum occurred after 15 days of age, coincident with granule cell loss. GT1a, on the other hand, was significantly reduced from 15 through 150 days in the sg/sg mice. GD3 is a major ganglioside of the undifferentiated granule cell, but it becomes rapidly displaced by the more complex gangliosides with the onset of granule cell maturation. In the sg/sg mice, GD3 persisted at abnormally high levels from 15 to 28 days and then accumulated through adulthood. These findings, and those from other cerebellar mouse mutants, suggest that GD1a is enriched in granule cells and that GT1a is enriched in Purkinje cells. Our findings also suggest that GT1a is more concentrated in branchlet spines than in other regions of the Purkinje cell membrane. GT1b appears to be enriched in both granule cells and Purkinje cells, whereas GM1 appears to be enriched in myelin. Furthermore, the apparent persistence of the embryonic ganglioside GD3 in sg/sg mice results from an early-onset reactive gliosis, together with a partial retardation in granule cell maturation. The accumulation of GD3 beyond 28 days reflects the continued accretion of GD3 in reactive glia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号