首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

Hazard-resistant materials for homes promise environmental benefits, such as avoided waste and materials for repairs, which can be overlooked by scoping in life-cycle assessment (LCA) approaches. Our motivation for pursuing this research was to see how incorporating these avoided losses in the LCA could impact choices between hazard-resistant and traditional materials.

Methods

Two choices common in home construction were analyzed using an LCA process that incorporates catastrophe modeling to consider avoided losses made possible with hazard-resistant materials. These findings were compared to those based on a similar LCA that did not consider these avoided losses. The choices considered were standard windows vs. windows with impact-resistant glass and standard windows with no opening protection vs. standard windows with impact-resistant storm panels.

Results and discussion

For the window comparisons, the standard products were environmentally preferable when avoided losses from storm events were not considered in the LCA. However, when avoided losses were considered, the hazard-resistant products were environmentally preferable. Considering avoided losses in LCAs, as illustrated by the window choices, can change which product appears to be the environmentally preferable option. Further, as home service life increases, the environmental net benefit of the hazard-resistant product increases.

Conclusions

Our results show the value of an LCA approach which allows more complete scopings of comparisons between hazard-resistant materials and their traditional counterparts. This approach will help translate the impacts of hazard-resistant products into the more familiar language used to talk about “green” products, enabling more informed decisions by product manufacturers, those who develop building certification systems and codes, researchers, and other building industry stakeholders.  相似文献   

2.

Purpose

Life cycle assessment (LCA) has not been widely applied in the building design process because it is perceived to be complex and time-consuming. There is a high demand for simplified approaches that architects can use without detailed knowledge of LCA. This paper presents a parametric LCA approach, which allows architects to efficiently reduce the environmental impact of building designs.

Methods

First, the requirements for design-integrated LCA are analyzed. Then, assumptions to simplify the required data input are made and a parametric model is established. The model parametrizes all input, including building geometry, materials, and boundary conditions, and calculates the LCA in real time. The parametric approach possesses the advantage that input parameters can be adjusted easily and quickly. The architect has two options to improve the design: either through manually changing geometry, building materials, and building services, or through the use of an optimization solver. The parametric model was implemented in a parametric design software and applied using two cases: (a) the design of a new multi-residential building, and (b) retrofitting of a single-family house.

Results and discussion

We have successfully demonstrated the capability of the approach to find a solution with minimum environmental impact for both examples. In the first example, the parametric method is used to manually compare geometric design variants. The LCA is calculated based on assumptions for materials and building services. In the second example, evolutionary algorithms are employed to find the optimum combination of insulation material, heating system, and windows for retrofitting. We find that there is not one optimum insulation thickness, but many optima, depending on the individual boundary conditions and the chosen environmental indicator.

Conclusions

By incorporating a simplified LCA into the design process, the additional effort of performing LCA is minimized. The parametric approach allows the architect to focus on his main task of designing the building and finally makes LCA practically useful for design optimization. In the future, further performance analysis capabilities such as life cycle costing can also be integrated.
  相似文献   

3.

Purpose

Weighting in Life Cycle Assessment (LCA) is a much-debated topic. Various tools have been used for weighting in LCA, Multi-Criteria Decision Analysis (MCDA) being one of the most common. However, it has not been thoroughly assessed how weight elicitation techniques of MCDA with different scales (interval and ratio) along with external and internal normalisation affect weighting and subsequent results. The aim of this survey is to compare different techniques in an illustrative example in the building sector.

Methods

A panel of Nordic LCA experts accomplished six weighting exercises. The different weight elicitation techniques are SWING which is based on the interval scale; Simple Multi-Attribute Rating Technique (SMART) and Analytic Hierarchy Process (AHP) which is based on the ratio scale. Information on the case study was provided for the panellists, along with characterised or normalised impact assessment scores. However, in the first weighting exercise, the panellists were not provided with any scores or background information, but they had to complete the weighting at a more general level. With the weights provided by the panel, the environmental impacts of three alternative house types were aggregated. The calculations were based on three well-grounded aggregation rules, which are commonly used in the field of LCA or decision analysis.

Results and discussion

In the illustrative construction example, the different aggregation rules had the biggest impact on the results. The results were different in the six calculation methods: when externally normalised scores were applied, house type A was superior in most of the calculations, but when internal normalisation was accomplished, house type C was superior. By using equal weights, similar results were obtained. None of the panellists intuitively considered A as the superior house type, but in some of the calculations, this was indeed the case. Furthermore, the results refer to the fact that the panellists completed the weighting on the basis of their general knowledge, without taking the features of different weight elicitation techniques into account.

Conclusions

External normalisation provides information on a magnitude of impacts, and in some cases, external normalisation may be a more influential factor than weighting. Based on the results, it cannot be stated which different weight elicitation technique is the most suitable for LCA. However, the method should be selected based on the aims and purpose of the study. Moreover, the elicitation questions should be explained with care to experts so that they interpret the questions as intended.  相似文献   

4.

Purpose

Life cycle assessment (LCA) has been increasingly implemented in analyzing the environmental performance of buildings and construction projects. To assess the life cycle environmental performance, decision-makers may adopt the two life cycle impact assessment (LCIA) approaches, namely the midpoint and endpoint models. Any imprudent usage of the two approaches may affect the assessment results and thus lead to misleading findings. ReCiPe, a well-known work, includes a package of LCIA methods to provide assessments on both midpoint and endpoint levels. This study compares different potential LCIA results using the midpoint and endpoint approaches of ReCiPe based on the assessment of a commercial building in Hong Kong.

Methods

This paper examines 23 materials accounting for over 99 % of the environmental impacts of all the materials consumed in commercial buildings in Hong Kong. The midpoint and endpoint results are compared at the normalization level. A commercial building in Hong Kong is further studied to provide insights as a real case study. The ranking of impact categories and the contributions from various construction materials are examined for the commercial building. Influence due to the weighting factors is discussed.

Results and discussion

Normalization results of individual impact categories of the midpoint and endpoint approaches are consistent for the selected construction materials. The difference in the two approaches can be detected when several impact categories are considered. The ranking of materials is slightly different under the two approaches. The ranking of impact categories demonstrates completely different features. In the case study of a commercial building in Hong Kong, the contributions from subprocesses are different at the midpoint and endpoint. The weighting factors can determine not only the contributions of the damage categories to the total environment, but also the value of a single score.

Conclusions

In this research, the midpoint and endpoint approaches are compared using ReCiPe. Information is whittled down from the inventories to a single score. Midpoint results are comprehensive while endpoint results are concise. The endpoint approach which provides additional information of damage should be used as a supplementary to the midpoint model. When endpoint results are asked for, a LCIA method like ReCiPe that provides both the midpoint and endpoint analysis is recommended. This study can assist LCA designers to interpret the midpoint and endpoint results, in particular, for the assessment of commercial buildings in Hong Kong.  相似文献   

5.

Purpose

With building construction and demolition waste accounting for 50 % of land fill space, the diversion of reusable materials is essential for Perth”s environment. The reuse and recovery of embodied energy-intensive construction materials during civil engineering works programs can offer significant energy savings and assist in the mitigation of the carbon footprint.

Methods

A streamlined life cycle assessment, with limited focus, was carried out to determine the carbon footprint and embodied energy associated with a 100-m section of road base. A life cycle inventory of inputs (energy and materials) for all processes that occurred during the development of a 100-m road section was developed. Information regarding the energy and materials used for road construction work was obtained from the Perth-based firm, Cossill and Webley, Consulting Engineers. These inputs were inserted into Simapro LCA software to calculate the associated greenhouse gas emissions and embodied energy required for the construction and maintenance of a 100-m road section using. Two approaches were employed; a traditional approach that predominantly employed virgin materials, and a recycling approach.

Results and discussion

The GHG emissions and embodied energy associated with the construction of a 100-m road section using virgin materials are 180 tonnes of CO2-e and 10.7 terajoules (TJ), respectively. The substitution of crushed rock with recycled brick road base does not appear to reduce the carbon footprint in the pre-construction stage (i.e. from mining to material construction, plus transportation of materials to the construction site). However, this replacement could potentially offer environmental benefits by reducing quarrying activities, which would not only conserve native bushland but also reduce the loss of biodiversity along with reducing the space and cost requirements associated with landfill. In terms of carbon footprint, it appears that GHG emissions are reduced significantly when using recycled asphalt, as opposed to other materials. About 22 to 30 % of greenhouse gas (GHG) emissions can be avoided by replacing 50 to 100 % of virgin asphalt with Reclaimed Asphalt Pavement (RAP) during the maintenance period.

Conclusions

The use of recycled building and road construction materials such as asphalt, concrete, and limestone can potentially reduce the embodied energy and greenhouse gas emissions associated with road construction. The recycling approach that uses 100 % reused crushed rock base and recycled concrete rubble, and 15 % RAP during the maintenance period could reduce the total carbon footprint by approximately 6 %. This large carbon saving in pavement construction is made possible by increasing the percentage of RAP in the wearing course.  相似文献   

6.

Purpose

This paper uses a dynamic life cycle assessment (DLCA) approach and illustrates the potential importance of the method using a simplified case study of an institutional building. Previous life cycle assessment (LCA) studies have consistently found that energy consumption in the use phase of a building is dominant in most environmental impact categories. Due to the long life span of buildings and potential for changes in usage patterns over time, a shift toward DLCA has been suggested.

Methods

We define DLCA as an approach to LCA which explicitly incorporates dynamic process modeling in the context of temporal and spatial variations in the surrounding industrial and environmental systems. A simplified mathematical model is used to incorporate dynamic information from the case study building, temporally explicit sources of life cycle inventory data and temporally explicit life cycle impact assessment characterization factors, where available. The DLCA model was evaluated for the historical and projected future environmental impacts of an existing institutional building, with additional scenario development for sensitivity and uncertainty analysis of future impacts.

Results and discussion

Results showed that overall life cycle impacts varied greatly in some categories when compared to static LCA results, generated from the temporal perspective of either the building's initial construction or its recent renovation. From the initial construction perspective, impacts in categories related to criteria air pollutants were reduced by more than 50 % when compared to a static LCA, even though nonrenewable energy use increased by 15 %. Pollution controls were a major reason for these reductions. In the future scenario analysis, the baseline DLCA scenario showed a decrease in all impact categories compared with the static LCA. The outer bounds of the sensitivity analysis varied from slightly higher to strongly lower than the static results, indicating the general robustness of the decline across the scenarios.

Conclusions

These findings support the use of dynamic modeling in life cycle assessment to increase the relevance of results. In some cases, decision making related to building design and operations may be affected by considering the interaction of temporally explicit information in multiple steps of the LCA. The DLCA results suggest that in some cases, changes during a building's lifetime can influence the LCA results to a greater degree than the material and construction phases. Adapting LCA to a more dynamic approach may increase the usefulness of the method in assessing the performance of buildings and other complex systems in the built environment.  相似文献   

7.

Purpose

Comparative life-cycle assessments (LCAs) today lack robust methods of interpretation that help decision makers understand and identify tradeoffs in the selection process. Truncating the analysis at characterization is misleading and existing practices for normalization and weighting may unwittingly oversimplify important aspects of a comparison. This paper introduces a novel approach based on a multi-criteria decision analytic method known as stochastic multi-attribute analysis for life-cycle impact assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.

Methods

To contrast different valuation methods, this study performs a comparative LCA of liquid and powder laundry detergents using three approaches to normalization and weighting: (1) characterization with internal normalization and equal weighting, (2) typical valuation consisting of external normalization and weights, and (3) SMAA-LCIA using outranking normalization and stochastic weighting. Characterized results are often represented by LCA software with respect to their relative impacts normalized to 100 %. Typical valuation approaches rely on normalization references, single value weights, and utilizes discrete numbers throughout the calculation process to generate single scores. Alternatively, SMAA-LCIA is capable of exploring high uncertainty in the input parameters, normalizes internally by pair-wise comparisons (outranking) and allows for the stochastic exploration of weights. SMAA-LCIA yields probabilistic, rather than discrete comparisons that reflect uncertainty in the relative performance of alternatives.

Results and discussion

All methods favored liquid over powder detergent. However, each method results in different conclusions regarding the environmental tradeoffs. Graphical outputs at characterization of comparative assessments portray results in a way that is insensitive to magnitude and thus can be easily misinterpreted. Typical valuation generates results that are oversimplified and unintentionally biased towards a few impact categories due to the use of normalization references. Alternatively, SMAA-LCIA avoids the bias introduced by external normalization references, includes uncertainty in the performance of alternatives and weights, and focuses the analysis on identifying the mutual differences most important to the eventual rank ordering.

Conclusions

SMAA-LCIA is particularly appropriate for comparative LCAs because it evaluates mutual differences and weights stochastically. This allows for tradeoff identification and the ability to sample multiple perspectives simultaneously. SMAA-LCIA is a robust tool that can improve understanding of comparative LCA by decision or policy makers.  相似文献   

8.

Purpose

The objective of this research was to evaluate the appropriateness of using life cycle assessment (LCA) for new applications that incorporate emerging materials and involve site-specific scenarios. Cradle-to-grave impacts of copper-treated lumber used in a raised garden bed are assessed to identify key methodological challenges and recommendations applying LCA for such purposes as well as to improve sustainability within this application.

Methods

The functional unit is a raised garden bed measuring 6.67 board feet (bf) in volume over a period of 20 years. The garden beds are made from softwood lumber such as southern yellow pine. The two treatment options considered were alkaline copper quaternary and micronized copper quaternary. Ecoinvent 2.2 provided certain life cycle inventory (LCI) data needed for the production of each garden bed, while additional primary and secondary sources were accessed to supplement the LCI.

Results and discussion

Primary data were not available for all relevant inventory requirements, as was anticipated, but enough secondary data were gathered to conduct a screening-level LCA on these raised garden bed applications. A notable finding was that elimination of organic solvent could result in a more sustainable lumber treatment product. Conclusions are limited by data availability and key methodological challenges facing LCA and emerging materials.

Conclusions

Although important data and methodological challenges facing LCA and emerging materials exist, this LCA captured material and process changes that were important drivers of environmental impacts. LCA methods need to be amended to reflect the properties of emerging materials that determine their fate, transport, and impacts to the environment and health. It is not necessary that all recommendations come to light before LCA is applied in the context of emerging materials. Applications of such materials involve many inputs beyond emerging materials that are already properly assessed by LCA. Therefore, LCA should be used in its current state to enhance the decision-making context for the sustainable development of these applications.  相似文献   

9.

Purpose

This study provides a general methodology to integrate LCA into a single- or multi-objective process design optimization context. It uses specific weightings for foreground emissions, for preventable background emissions and for unpreventable background emissions, for each impact category. It is illustrated for a natural gas combined cycle power plant with three scenarios to reduce its carbon dioxide emissions: CO2 capture and sequestration, fuel substitution with biogas or fuel substitution with synthetic gas from wood.

Methods

Assuming that the opportunity to prevent emissions elsewhere is an implicit part of the process design decision space, the optimal solution cannot waste such opportunities and is shown to minimize total life cycle costs, including emission avoidance costs based on the optimal combination of prevention and compensation measures in the background system. In the case study, background emissions are inventoried from the ecoinvent database, their compensation costs are derived from the Ecocosts 2007 impact assessment method and their prevention costs are estimated from the literature. The calculated avoidance costs (weightings) then show how the background system affects the final choice of CO2 reduction scenario.

Results and discussion

In the case study, all three options partially shift environmental burdens to the background system, which can be prevented or compensated. The corresponding minimum avoidance cost is highest overall for the biogas option, thus putting it at a disadvantage. For a vast majority of ecoinvent processes, energy efficiency is important to minimize total avoidance costs because they are dominated by background CO2. Furthermore, prevention cost data gathering can be simplified in some cases, without distorting design decisions, using a CO2-only background inventory. The non-CO2 background inventory is more useful after process design, for procurement decisions.

Conclusions

Over-investing in design modifications cannot achieve the same background impact reductions as a sensible green procurement policy. Thus, the proposed weighting methodology ensures that all types of design decisions integrate LCA without incorrectly assuming that emissions are necessarily unavoidable when in the background. Within a context of future emission taxes or tradable permits, the weightings can also anticipate the after-tax cost passed on by suppliers—a marketable benefit of LCA.

Recommendations

Since many LCA studies are equivalent to design optimization problems, the proposed weighting methodology provides a single-score impact method relevant to decision-making as well as a straightforward approach to LCA interpretation in terms of detailing the optimal combination of applicable design modifications, prevention measures and compensation measures.  相似文献   

10.

Purpose

In the process of selecting where effective environmental measures should be directed, the weighting step of life cycle assessment (LCA) is an optional, controversial, but nevertheless important tool. A set of criteria for evaluating weighting methods has relevance in the process of acquiring meta-knowledge, and thus competence, in assigning relative weights to environmental impact categories. This competence is helpful when choosing between presently available weighting methods, and in creating new weighting methods.

Methods

Criteria in LCA-related literature are reviewed. The authors have focused on identifying lists of criteria rather than extracting criteria from bulks of text. An important starting point has been the actual use of the term “criterion”, while at the same time disqualifying certain definitions of the term which are too far removed from the two definitions provided in this article.

Results and discussion

Criteria for evaluating weighting methods are shown to fall into two general categories. The first being general criteria for weighting methods, demanding that weighting methods have a broad scope, are practical for users and scientists, are scientific and have ethical goals. The second being criteria proposing characteristics of concrete environmental damage which should be taken into account by a weighting method. A noteworthy example is reversibility.

Conclusions

While the comprehensive tables of criteria speak for themselves, it can be observed that the need for transparency is particularly highlighted in literature. Furthermore, ISO 14044’s statement that the weighting step is “not scientifically based” would appear to defy a significant proportion of the other criteria reviewed; this, however, depends on its interpretation.  相似文献   

11.

Purpose

Sustainability assessments of buildings using the life cycle approach have become more and more common. This includes the assessment of the environmental performance of buildings. However, the influence of the construction products used for the fabric, the finishing, and the technical building equipment of buildings has hardly been described in literature. For this reason, we evaluated the influence of the technical building equipment and its impact on the environment for different residential buildings.

Materials and methods

Five residential buildings were evaluated by applying the methodology of life cycle assessment (LCA) (ISO14040) expressed using quantitative assessment categories according to prEN15978.

Results and discussion

Results show that the optimization of energy performance has already reached a high level in Austria, so that the overall potential for possible improvements is quite low. Especially in low-energy and passive?Chouse-standard residential buildings, the limits for energy optimization in the use phase have mostly been achieved. In contrast to this, the integrated LCA (iLCA) findings attribute a high optimization potential to the construction products used for the technical building equipment as well as to the building fabric and finishing. Additionally, the passive house shows the lowest contribution of the technical building equipment on the overall LCA results.

Conclusions

The iLCA findings suggest that it is recommended to include the technical building equipment for future assessments of the environmental performance of buildings. It is also suggested to use a broad number of environmental indicators for building LCA.  相似文献   

12.

Purpose

Sustainable development aims to enhance the quality of life by improving the social, economic and environmental conditions for present and future generations. A sustainable engineering decision-making strategy for design and assessment of construction works (i.e., civil engineering and buildings) should take into account considerations regarding the society, the economy and the environment. This study presents a novel approach for the life cycle assessment (LCA) of a case-study building subjected to seismic actions during its service life, accounting for structural reliability.

Methods

A methodology is presented that evaluates the time-dependent probability of exceeding a limit state considering the uncertainty in the representation of seismic action. By employing this methodology, the earthquake-induced damages are related to the environmental and social losses caused by the occurrence of the earthquake. A LCA of a case-study building accounting for the time-dependent seismic reliability is conducted using a damage-oriented LCA approach.

Results and discussion

The contributions of the different life cycle phases to the total environmental impact related to the building lifetime are in agreement with previous results in this field of study. However, the LCA results revealed significant risk-based contributions for the rehabilitation phase due to the induced damage resulting in seismic events. Particularly, the rehabilitation phase is expected to contribute to the total environmental impact with around the 25 % of the initial environmental impact load (related to the pre-use phase) as a consequence of seismic damage.

Conclusions and recommendations

The probability of occurrence of seismic events affects the LCA results for various life cycle phases of a building in terms of all the indicators adopted in the analysis. The time-dependent probability of collapse in a year can represent a benchmark indicator for human safety in the context of social sustainability for the building sector. The proposed approach can be implemented in a sustainable decision-making tool for design and assessment.  相似文献   

13.

Background, aim, and scope

Many studies evaluate the results of applying different life cycle impact assessment (LCIA) methods to the same life cycle inventory (LCI) data and demonstrate that the assessment results would be different with different LICA methods used. Although the importance of uncertainty is recognized, most studies focus on individual stages of LCA, such as LCI and normalization and weighting stages of LCIA. However, an important question has not been answered in previous studies: Which part of the LCA processes will lead to the primary uncertainty? The understanding of the uncertainty contributions of each of the LCA components will facilitate the improvement of the credibility of LCA.

Methodology

A methodology is proposed to systematically analyze the uncertainties involved in the entire procedure of LCA. The Monte Carlo simulation is used to analyze the uncertainties associated with LCI, LCIA, and the normalization and weighting processes. Five LCIA methods are considered in this study, i.e., Eco-indicator 99, EDIP, EPS, IMPACT 2002+, and LIME. The uncertainty of the environmental performance for individual impact categories (e.g., global warming, ecotoxicity, acidification, eutrophication, photochemical smog, human health) is also calculated and compared. The LCA of municipal solid waste management strategies in Taiwan is used as a case study to illustrate the proposed methodology.

Results

The primary uncertainty source in the case study is the LCI stage under a given LCIA method. In comparison with various LCIA methods, EDIP has the highest uncertainty and Eco-indicator 99 the lowest uncertainty. Setting aside the uncertainty caused by LCI, the weighting step has higher uncertainty than the normalization step when Eco-indicator 99 is used. Comparing the uncertainty of various impact categories, the lowest is global warming, followed by eutrophication. Ecotoxicity, human health, and photochemical smog have higher uncertainty.

Discussion

In this case study of municipal waste management, it is confirmed that different LCIA methods would generate different assessment results. In other words, selection of LCIA methods is an important source of uncertainty. In this study, the impacts of human health, ecotoxicity, and photochemical smog can vary a lot when the uncertainties of LCI and LCIA procedures are considered. For the purpose of reducing the errors of impact estimation because of geographic differences, it is important to determine whether and which modifications of assessment of impact categories based on local conditions are necessary.

Conclusions

This study develops a methodology of systematically evaluating the uncertainties involved in the entire LCA procedure to identify the contributions of different assessment stages to the overall uncertainty. Which modifications of the assessment of impact categories are needed can be determined based on the comparison of uncertainty of impact categories.

Recommendations and perspectives

Such an assessment of the system uncertainty of LCA will facilitate the improvement of LCA. If the main source of uncertainty is the LCI stage, the researchers should focus on the data quality of the LCI data. If the primary source of uncertainty is the LCIA stage, direct application of LCIA to non-LCIA software developing nations should be avoided.  相似文献   

14.

Purpose

In LCA, a multi-functionality problem exists whenever the environmental impacts of a multi-functional process have to be allocated between its multiple functions. Methods for fixing this multi-functionality problem are controversially discussed because the methods include ambiguous choices. To study the influence of these choices, the ISO standard requires a sensitivity analysis. This work presents an analytical method for analyzing sensitivities and uncertainties of LCA results with respect to the choices made when a multi-functionality problem is fixed.

Methods

The existing matrix algebra for LCA is expanded by explicit equations for methods that fix multi-functionality problems: allocation and avoided burden. For allocation, choices exist between alternative allocation factors. The expanded equations allow calculating LCA results as a function of allocation factors. For avoided burden, choices exist in selecting an avoided burden process from multiple candidates. This choice is represented by so-called aggregation factors. For avoided burden, the expanded equations calculate LCA results as a function of aggregation factors. The expanded equations are used to derive sensitivity coefficients for LCA results with respect to allocation factors and aggregation factors. Based on the sensitivity coefficients, uncertainties due to fixing a multi-functionality problem by allocation or avoided burden are analytically propagated. The method is illustrated using a virtual numerical example.

Results and discussion

The presented approach rigorously quantifies sensitivities of LCA results with respect to the choices made when multi-functionality problems are fixed with allocation and avoided burden. The uncertainties due to fixing multi-functionality problems are analytically propagated to uncertainties in LCA results using a first-order approximation. For uncertainties in allocation factors, the first-order approximation is exact if no loops of the allocated functional flows exist. The contribution of uncertainties due to fixing multi-functionality problems can be directly compared to the uncertainty contributions induced by uncertain process data or characterization factors. The presented method allows the computationally efficient study of uncertainties due to fixing multi-functionality problems and could be automated in software tools.

Conclusions

This work provides a systematic method for the sensitivity analysis required by the ISO standard in case choices between alternative allocation procedures exist. The resulting analytical approach includes contributions of uncertainties in process data, characterization factors, and—in extension to existing methods—uncertainties due to fixing multi-functionality problems in a unifying rigorous framework. Based on the uncertainty contributions, LCA practitioners can select fields for data refinement to decrease the overall uncertainty in LCA results.  相似文献   

15.

Purpose

When product systems are optimized to minimize environmental impacts, uncertainty in the process data may impact optimal decisions. The purpose of this article is to propose a mathematical method for life cycle assessment (LCA) optimization that protects decisions against uncertainty at the life cycle inventory (LCI) stage.

Methods

A robust optimization approach is proposed for decision making under uncertainty in the LCI stage. The proposed approach incorporates data uncertainty into an optimization problem in which the matrix-based LCI model appears as a constraint. The level of protection against data uncertainty in the technology and intervention matrices can be controlled to reflect varying degrees of conservatism.

Results and discussion

A simple numerical example on an electricity generation product system is used to illustrate the main features of this methodology. A comparison is made between a robust optimization approach, and decision making using a Monte Carlo analysis. Challenges to implement the robust optimization approach on common uncertainty distributions found in LCA and on large product systems are discussed. Supporting source code is available for download at https://github.com/renwang/Robust_Optimization_LCI_Uncertainty.

Conclusions

A robust optimization approach for matrix-based LCI is proposed. The approach incorporates data uncertainties into an optimization framework for LCI and provides a mechanism to control the level of protection against uncertainty. The tool computes optimal decisions that protects against worst-case realizations of data uncertainty. The robust optimal solution is conservative and is able to avoid the negative consequences of uncertainty in decision making.  相似文献   

16.

Purpose

The main goal of any life cycle assessment (LCA) study is to identify solutions leading to environmental savings. In conventional LCA studies, practitioners select from some alternatives the one which better matches their preferences. This task is sometimes simplified by ranking these alternatives using an aggregated indicator defined by attaching weights to impacts. We address here the inverse problem. That is, given an alternative, we aim to determine the weights for which that solution becomes optimal.

Methods

We propose a method based on linear programming (LP) that determines, for a given alternative, the ranges within which the weights attached to a set of impact metrics must lie so that when a weighting combination of these impacts is optimized, the alternative can be optimal, while if the weights fall outside this range, it is guaranteed that the solution will be suboptimal. A large weight value implies that the corresponding LCA impact is given more importance, while a low value implies the converse. Furthermore, we provide a rigorous mathematical analysis on the implications of using weighting schemes in LCA, showing that this practice guides decision-making towards the adoption of some specific alternatives (those lying on the convex envelope of the resulting trade-off curve).

Results and discussion

A case study based on the design of hydrogen infrastructures is taken as a test bed to illustrate the capabilities of the approach presented. Given are a set of production and storage technologies available to produce and deliver hydrogen, a final demand, and cost and environmental data. A set of designs, each achieving a unique combination of cost and LCA impact, is considered. For each of them, we calculate the minimum and maximum weight to be given to every LCA impact so that the alternative can be optimal among all the candidate designs. Numerical results show that solutions with lower impact are selected when decision makers are willing to pay larger monetary penalties for the environmental damage caused.

Conclusions

LP can be used in LCA to translate the decision makers’ preferences into weights. This information is rather valuable, particularly when these weights represent economic penalties, as it allows screening and ranking alternatives on the basis of a common economic basis. Our framework is aimed at facilitating decision making in LCA studies and defines a general framework for comparing alternatives that show different performance in a wide variety of impact metrics.  相似文献   

17.

-

DOI: http://dx.doi.org/10.1065/lca2006.04.015

Goal, Scope and Background

The weighting phase in Life Cycle Assessment (LCA) is and has always been a controversial issue, partly because this element requires the incorporation of social, political and ethical values. Despite the controversies, weighting is widely used in practise. In this paper we will present an approach for monetisation of environmental impacts which is based on the consistent use of ecotaxes and fees in Sweden as a basis for the economic values. The idea behind this approach is that taxes and fees are expressions of the values society places on resource uses and emissions. An underlying assumption for this is that the decisions taken by policy-makers are reflecting societal values thus reflecting a positive view of representative democracy.

Methods

In the method a number of different ecotaxes are used. In many cases they can directly be used as valuation weighting factors, an example is the CO2-tax that can be used as a valuation of CO2-emissions. In some cases, a calculation has to be made in order to derive a weighting factor. An example of this is the tax on nitrogen fertilisers which can be recalculated to an emission of nitrogen which can be used as a weighting factor for nitrogen emissions. The valuation weighting factors can be connected to characterisation methods in the normal LCA practise. We have often used the Ecotax method in parallel to other weighting methods such as the Ecoindicator and EPS methods and the results are compared.

Results and Discussion

A new set of weighting factors has been developed which has been used in case studies. It is interesting to note that the Ecotax method is able to identify different environmental problems as the most important ones in different case studies. In some cases, the Ecotax method has identified some interventions as the most important ones which lack weighting factors in other weighting methods. The midpoint-endpoint debate in the LCA literature has often centred on different types of uncertainties. Sometimes it is claimed that an advantage with having an endpoint approach is that the weighting would be easier and less uncertain. Here we are however suggesting a mid-point weighting method that we claim are no less uncertain than other often used weighting methods based on a damage assessment. This paper can therefore be seen as a discussion paper also in the midpoint-endpoint debate.

Conclusion and Recommendation

The Ecotax method is ready to use. It should be further updated and developed as taxes are changed and new characterisation methods are developed. The method is not only relevant for LCA but also for other environmental systems analysis. The Ecotax method has also been used as a valuation method for Cost-Benefit Analysis (CBA), Life Cycle Costing (LCC) and within the context of a Strategic Environmental Assessment (SEA).
  相似文献   

18.

Purpose

Life cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations.

Method

This article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization.

Results

The review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions.

Conclusions

The article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry.  相似文献   

19.

Purpose

This article summarizes student performance and survey data from a recent massive open online course (MOOC) on life cycle assessment (LCA). Its purpose is to shed light on student learning outcomes, challenges, and success factors, as well as on improvement opportunities for the MOOC and the role of online courses in LCA education in general.

Methods

Student survey data and course performance data were compiled, analyzed, and interpreted for 1257 students who completed a pre-course survey and 262 students who completed a post-course survey. Both surveys were designed to assess student learning outcomes, topical areas of difficulty, changing perceptions on the nature of LCA, and future plans after completing the MOOC.

Results and discussion

Results suggest that online courses can attract and motivate a large number of students and equip them with basic analytical skills to move on to more advanced LCA studies. However, results also highlight how MOOCs are not without structural limitations, especially related to mostly “locked in” content and the impracticality of directly supporting individual students, which can create challenges for teaching difficult topics and conveying important limitations of LCA in practice.

Conclusions

Online courses, and MOOCs in particular, may present an opportunity for the LCA community to efficiently recruit and train its next generations of LCA analysts and, in particular, those students who might not otherwise have an opportunity to take an LCA course. More surveys should be conducted by LCA instructors and researchers moving forward to enable scientific development and sharing of best practice teaching methods and materials.  相似文献   

20.

Purpose

The conventional decision-making for bridges is mostly focusing on technical, economical, and safety perspectives. Nowadays, the society devotes an ever-increased effort to the construction sector regarding their environmental performance. However, considering the complexity of the environmental problems and the diverse character of bridges, the related research for bridge as a whole system is very rare. Most existing studies were only conducted for a single indicator, part of the structure components, or a specific life stage.

Methods

Life Cycle Assessment (LCA) is an internationally standardized method for quantifying the environmental impact of a product, asset, or service throughout its whole life cycle. However, in the construction sector, LCA is usually applied in the procurement of buildings, but not bridges as yet. This paper presents a comprehensive LCA framework for road bridges, complied with LCA ReCiPe (H) methodology. The framework enables identification of the key structural components and life cycle stages of bridges, followed by aggregation of the environmental impacts into monetary values. The utility of the framework is illustrated by a practical case study comparing five designs for the Karlsnäs Bridge in Sweden, which is currently under construction.

Results and discussion

This paper comprehensively analyzed 20 types of environmental indicators among five proposed bridge designs, which remedies the absence of full spectrum of environmental indicators in the current state of the art. The results show that the monetary weighting system and uncertainties in key variables such as the steel recycling rate and cement content may highly affect the LCA outcome. The materials, structural elements, and overall designs also have varying influences in different impact categories. The result can be largely affected by the system boundaries, surrounding environment, input uncertainties, considered impact indicators, and the weighting systems applied; thus, no general conclusions can be drawn without specifying such issues.

Conclusions

Robustly evaluating and ranking the environmental impact of various bridge designs is far from straightforward. This paper is an important attempt to evaluate various designs from full dimensions. The results show that the indicators and weighting systems must be clearly specified to be applicable in a transparent procurement. This paper provides vital knowledge guiding the decision maker to select the most LCA-feasible proposal and mitigate the environmental burden in the early stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号