首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
产Ⅱ类细菌素乳酸菌群体感应及其应用   总被引:1,自引:0,他引:1  
张香美  李平兰 《微生物学报》2011,51(9):1152-1157
群体感应(quorum sensing,QS)是微生物通过感知与细胞密度相关的信号分子的浓度来调控基因表达的一种行为。许多产Ⅱ类细菌素乳酸菌通过自诱导肽介导的QS系统调控其细菌素的合成。本文综述了乳酸菌Ⅱ类细菌素合成的QS调控现象、调控机制、QS系统组分以及QS的应用。产Ⅱ类细菌素乳酸菌QS的研究,必将为揭示发酵调控机理、调控发酵过程提供新的研究平台,为食品级基因表达系统的开发提供新的选择。  相似文献   

2.
戴昕  周佳恒  朱亮  徐向阳   《生态学杂志》2014,25(4):1206-1212
群体感应是微生物利用信号分子感知环境条件并进行特定基因表达调控.近年来,随着群体感应在微生物信息交流中的作用日益凸显,其在生物聚集体(生物膜和颗粒)形成过程中的作用受到广泛关注.本文综述了自体诱导信号分子AI的分类和相应的群体感应调控方式,以及群体感应信号分子对生物聚集体形成和结构稳定的调控,并对群体感应研究新领域进行了展望.  相似文献   

3.
第34届国际无脊椎动物病理学会(SIP)会议简介   总被引:1,自引:0,他引:1  
第 34届国际无脊椎动物病理学会议于 2 0 0 1年 8月 2 5日 - 30日在荷兰Noordwijkerhout召开 ,来自美国、加拿大、英国、德国、法国、丹麦、荷兰、日本、中国等 30个国家的代表 4 0 0余人参加了本次会议。大会共交流论文 32 8篇。其中大会报告三个 :1.果蝇免疫系统的信号传导  2 .由杆状病毒介导的新的调节细胞凋亡的机制  3.昆虫及昆虫病原线虫间的宿主 寄生物相互作用关系 ;专题讲座 18个 (含 78个报告 ) ;分组报告 12 1个 (病毒学 4 2个、真菌 2 8个、线虫 14个、细菌 2 3个、原生动物 6个、交叉讨论 8个 ) ;墙报 12 6…  相似文献   

4.
梁志彬  陈豫梅  陈昱帆  程莹莹  张炼辉 《遗传》2016,38(10):894-901
抗生素耐药性一直是细菌病害防治的难题,药物外排泵过量表达是细菌耐药性形成的重要机制之一。在革兰氏阴性细菌中,RND(Resistance-nodulation-cell division)家族外排泵在耐药性中发挥着重要作用,近年来的研究表明,依赖于小分子信号物质进行调控的群体感应系统与RND外排泵家族之间存在紧密的相互作用关系。本文在介绍RND家族外排泵的结构、转运机理和群体感应系统的类型及调控方式的基础上,剖析了群体感应系统对RND外排泵的调控机理以及RND外排泵对群体感应系统信号分子转运的影响。深入研究RND家族外排泵与群体感应系统之间的相互依赖、相互制约关系有利于阐明RND家族外排泵的调控机理,并有可能为克服微生物耐药性问题提供新的思路。  相似文献   

5.
海洋微生物群体感应与群体感应淬灭的开发利用   总被引:1,自引:0,他引:1       下载免费PDF全文
群体感应与感应淬灭在微生物中普遍存在,群体感应通过调控基因表达赋予细菌有益或有害的特性,这些特性与人类健康、农业及水产养殖等领域密切相关。群体感应现象首先发现于海洋环境,近几年海洋采样等相关技术的发展,极大促进了海洋微生物的群体感应与淬灭研究的快速发展。本文对细菌及典型真菌的群体感应作用机制、信号分子的多样性以及其与细菌致病性的相关性进行了阐述,对群体感应淬灭的机制与意义、淬灭因子多样性以及相关酶资源的发掘也进行了分析和展望。  相似文献   

6.
群体感应是微生物在繁殖过程中分泌一些特定的信号分子,当信号分子浓度达到一定阈值后,可以调控某些基因表达,从而实现信息交流的现象.群体感应调控着生物膜形成、公共物质合成、基因水平转移等一系列社会性行为,广泛存在于各类微生物信息交流中.活性污泥、生物膜和颗粒污泥等生物聚集体广泛存在群体感应现象,了解和认识群体感应与微生物之间的调控行为,对于废水处理具有重要意义.本文综述了感应信号分子的分类、群体感应调控机制,群体感应在活性污泥、生物膜、好氧颗粒污泥和厌氧颗粒污泥等废水处理中的调控行为的研究进展,并对废水处理中群体感应的研究进行了展望,以期为深入理解废水处理中群体感应调控行为提供参考.  相似文献   

7.
微生物的群体感应(quorum sensing,QS)也称为自诱导,是微生物间通过小分子分泌物(自诱导物)在细胞与细胞之间扩散以感知群体密度,并通过自诱导物的浓度及其与转录因子的相互作用调控整个群体细胞中一系列目标基因表达的一种自我感知系统.不同的细菌类型,其QS系统也有一定的差异.根据信号分子的不同,一般可以将细菌的QS系统分为3类,即以AHL为信号分子的革兰氏阴性细菌、以寡肽类物质为信号分子的革兰氏阳性细菌和以哈氏弧菌为代表的兼具上述两种类型QS系统特征的第三类QS系统.综述革兰氏阴性细菌、革兰氏阳性细菌和哈氏弧菌的3种不同QS系统及其在病原菌致病性方面的研究进展.  相似文献   

8.
群体感应系统介导细菌生物膜形成的研究进展   总被引:1,自引:0,他引:1  
群体感应(QS)是微生物之间的通讯机制,通过信号分子调控基因表达,这种交流可使细菌表达不同的生理行为,包括病原微生物的毒性、对抗生素的形成、生物膜的形成与生长等。生物膜的形成对微生物的代谢、毒力因子的表达等密切相关。群体感应现象与生物膜的形成相互依赖,生物膜提供菌体聚集场所,避免群体感应信号分子的扩散,聚集菌体的群体感应现象为生物膜的形成提供基础。群体感应系统不仅可直接介导细菌生物膜的形成,还可调节胞内第二信使分子水平,间接调控生物膜的生成。本文中,笔者从直接和协同其他信号分子两方面对细菌生物膜形成机制研究进展进行综述,为在工业应用中降低细菌耐药性、指导食品生产安全、提高功能性生物膜产量等方面提供理论依据。  相似文献   

9.
群感效应(quorum sensing,QS)是指微生物细胞通过感应细胞外信号分子的浓度从而感知菌群密度的大小,并依赖信号分子的浓度来调控基因表达的一种交流机制。金黄色葡萄球菌(Staphylococcus aureus)与铜绿假单胞菌(Pseudomonas aeruginosa)分别是革兰氏阳性菌和革兰氏阴性菌中典型的食源性致病菌,二者的QS系统在不同情况下的群体增殖中表现出竞争和协同作用,与毒素分泌、耐药性及被膜形成相关。本文中,笔者分别介绍了金黄色葡萄球菌和铜绿假单胞菌的群感效应系统,并概述了群感效应在两种微生物群体增殖中的作用,由于多种微生物种间关系调控和交流机制较为复杂,对两种微生物群体增殖特性和相互作用机制有待进一步研究。  相似文献   

10.
宋凯  周莲  何亚文 《微生物学通报》2021,48(4):1239-1248
群体感应是微生物间相互交流的一种重要机制。Diffusible Signaling Factor (DSF)-家族群体感应信号分子存在于多种革兰氏阴性菌中,调控细菌的致病性和适应性。本文首先介绍DSF-家族群体感应信号的结构多样性与保守性、生物合成途径和两类调控机制。DSF家族群体感应信号属于一类长链不饱和脂肪酸,碳水化合物和支链氨基酸是主要合成前体;合成途径主要包括脂肪酸合成循环和兼具脱水酶和硫酯酶活性的RpfF;在黄单胞菌和伯克氏菌中分别存在2种蛋白-蛋白互作机制调控DSF生物合成。随后,综述最新相关研究结果,提出顺式-2-十二碳烯酸(BDSF)可能是野油菜黄单胞菌侵染大白菜过程中所依赖的"活体"群体感应信号。最后,讨论和展望本领域下一步值得研究的关键科学问题。  相似文献   

11.
群体感应与微生物耐药性   总被引:1,自引:0,他引:1  
微生物耐药性已成为全球关注的严重问题,其演化机制和调控机理也已成为研究热点。近年来的研究发现,一些微生物耐药性机制受到群体感应系统的调控。群体感应是一种在微生物界广泛存在并与菌体密度关联的细胞-细胞间的通讯系统。高密度的菌落群体能够产生足够数量的小分子信号,激活下游包括致病毒力和耐药性机制在内的多种细胞进程,耐受抗生素并且危害寄主。本文结合国内外最新的研究进展,对微生物群体感应系统的研究现状进行了概括性介绍,重点阐述了群体感应系统对微生物耐药性机制的调控作用,如微生物生物被膜形成和药物外排泵调控等方面的作用,并探讨了利用群体淬灭控制微生物耐药性的新策略。  相似文献   

12.
革兰氏阴性菌根据信号分子N-酰基高丝氨酸内酯(AHLs)的浓度可以监测周围环境中自身或其他细菌的数量变化,当信号分子达到一定浓度阈值时,能启动相关基因的表达来适应环境的变化,这一调控系统被称为细菌的群体感应(quorumsensing,QS)系统。快速简便而有效地检测细菌是否以及产生何种信号分子成为深入研究和了解细菌群体感应的重要手段。现对信号分子AHLs敏感的用于检测不同的信号分子AHLs的微生物传感菌进行综述,并对其检测能力进行了讨论。  相似文献   

13.
细菌密度感应系统的信号干扰及其应用   总被引:3,自引:0,他引:3  
密度感应系统(quorum sensing,Qs)是细菌的一种群体行为调控机制,它控制着细菌的多种生命活动.在医学、工业和农业上都有重要意义。微生物QS信号分子和信号传导机制的发现有利于研究设计出各种信号干扰方法来阻断QS信号传导从而应用于微生物感染的防治。章综述了近年来有关QS信号干扰及其应用方面的研究进展。  相似文献   

14.
细菌群体感应“合作-欺骗”研究进展   总被引:1,自引:0,他引:1  
细菌利用信号分子进行细胞间的交流即为群体感应.群体感应调控着生物膜形成、公共物质合成、基因水平转移等一系列社会性行为.在群体感应过程中,公共物质分泌后可以被群体中任何个体所使用即合作;亦可以被一些不分泌公共物质的个体所使用形成欺骗.群体感应合作-欺骗既可能在种群中稳定维持,也可能由于欺骗子的快速增长造成种群崩溃.欺骗子致种群崩溃为病原菌控制新策略研发带来了希望,是目前群体感应研究方面的前沿和热点.本文在介绍细菌群体感应合作及欺骗的基础上,分析了群体感应合作-欺骗生态关系形成和发展的影响因素,重点从亲缘选择、谨慎代谢、代谢限制(基因多效型)、群体感应监管等方面探讨了细菌群体感应合作-欺骗的稳定维持机制,并对细菌群体感应合作-欺骗的相关研究进行了问题总结和展望,以期为深入理解群体感应、微生物种群生态提供参考.  相似文献   

15.
群体感应(quorum sensing,QS)是一种特殊的动态代谢调控机制,是细菌用于监控自身群体密度的环境信号感受系统。近年来,随着合成生物学的大力发展,基于稳定的菌群关系的人工合成菌群以及混菌共培养技术也取得了突破性的进展。群体感应系统因为可以实现细菌自主控制菌群关系的目的,而在菌群关系构建以及代谢工程中的研究和应用受到越来越多的关注。在对群体感应系统进行概述的基础上,对单菌基于群体感应的动态代谢调控进行了总结;同时也对群体感应的动态调控在革兰氏阴性菌和革兰氏阳性菌之间以及混菌共培养过程中的研究进展进行综述,以期能对群体感应系统的其他应用提供一些建议和帮助。  相似文献   

16.
细菌群体感应调控多样性及群体感应淬灭   总被引:3,自引:0,他引:3  
群体感应(Quorum sensing, QS)是细菌通过信号分子分泌、识别,从而调控基因水平转移、毒力因子分泌、芽孢产生及生物膜形成等群体行为的细胞交流机制。干扰信号分子的分泌、识别,可以阻断群体感应,实现群体淬灭。群体淬灭(Quorum quenching, QQ)是目前致病性控制、致腐性预防以及生物膜污染削减的重要策略之一。本文以群体感应信号分泌-识别-响应为主线,将群体感应分为等级、平行及竞争型三类调控方式,并对其特征进行了详细阐述;同时,探讨了信号分子类似物、信号分子降解酶剂、信号受体激活剂/抑制剂等策略在不同调控方式淬灭中的适用性;最后,对群体感应调控及淬灭进行了展望,以期为丰富细菌群体感应认知、促进群体淬灭应用提供参考。  相似文献   

17.
细菌群体感应的信号转导机制及其对抗生素生产的影响   总被引:1,自引:0,他引:1  
摘要:细菌的群体感应是一种群体行为调控机制。自然界中的很多细菌都有这种能力,即分泌一种或多种信号分子,通过这些信号分子的浓度来感知菌群密度,调控一系列相应靶基因的表达。在这些受调控的基因中,备受关注的是信号分子对抗生素生产的调节。本文综述了群体感应机制的最新研究进展和它对抗生素生产的调节,尤其对洋葱伯克霍尔德菌(Burkholderia. cepacia)进行了较为详细的探讨。  相似文献   

18.
群体感应信号分子AI-2研究进展   总被引:9,自引:0,他引:9  
群体感应(QS)是细菌根据种群密度的变化调控基因表达,协调群体行为的机制。除具有种特异性的信号分子AI-1外,近年来发现一类新的信号分子AI-2在调控细菌基因表达中起重要作用。AI-2的结构和生物合成途径已被确定,其产生依赖于一种称为LuxS的蛋白。目前认为AI-2在细菌种间交流中起通用信号分子(universalsignal)的作用。了解细菌的QS调控过程以及种间细胞交流的新机制,有助于对细菌病害进行防治。  相似文献   

19.
合成生物学的一个重要目标是设计、改造微生物(主要指细菌),使其能够自主执行复杂任务,如合成重要生物基产品(药物、生物燃料等)、疾病治疗以及环境修复等,造福人类社会.要完成这些任务,细菌必须依赖其信号传导系统,根据环境变化作出正确及时的应答.在长期进化过程中,细菌产生了众多不同的信号传导系统,给我们提供了大量宝贵的信号传导调控元件.通过对这些调控元件的合成生物学设计、改造,我们可以给细菌装备全新的信号传导系统,从而使其能够在工业生物技术及生物医学等应用中执行设定任务.  相似文献   

20.
细菌的群体感应系统(Quorum sensing,QS)参与许多生物学功能的调控,其中包括动植物病原细菌致病因子的生成以及人类某些病原细菌生物膜的形成。酰基高丝氨酸内酯(N-acylhomoserine lactone,AHL)是调控群体感应系统的关键信号分子。近年的研究表明,不同生物体包括细菌和真核生物中都存在类别不同的能够降解AHL的群体感应淬灭酶(Quorum-quenching enzyme)。在AHL依赖型致病菌和转基因植物中表达AHL降解酶能有效地抑制QS信号分子的积累,从而阻断了病原细菌的发  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号