共查询到20条相似文献,搜索用时 15 毫秒
1.
A life cycle assessment has been completed of potential biogas infrastructures on a regional scale. Centralised and distributed infrastructures were considered along with biogas end uses of Combined Heat and Power (CHP) and injection to the gas grid for either transport fuel or domestic heating end uses. Damage orientated (endpoint) life cycle impact assessment method identified that CHP with 80% heat utilisation had the least environmental impact, followed by transport fuel use. Utilisation for domestic heating purposes via the gas grid was found to perform less well. A 32% difference in transportation requirement between the centralised and distributed infrastructures was found to have a relatively small effect on the overall environmental impact. Global warming impacts were significantly affected by changes in methane emissions at upgrading stage, highlighting the importance of minimising operational losses. 相似文献
2.
3.
Sustainability impact assessment of increasing resource use intensity in forest bioenergy production chains 总被引:1,自引:0,他引:1
WENDELIN WERHAHN‐MEES TARU PALOSUO JORDI GARCIA‐GONZALO DOMINIK RÖSER MARCUS LINDNER 《Global Change Biology Bioenergy》2011,3(2):91-106
Changing forest management practices towards more intensive biomass utilization for energy purposes will affect the sustainability of resource management. The Tool for Sustainability Impact Assessment was applied to evaluate the environmental, social, and economic sustainability impacts of the stepwise increased extraction of forest biomass of three typical Scandinavian Scots pine bioenergy production chains (BPCs). The assessed sources of the woody biomass were pellets as a by‐product of the sawmilling industry, wood chips deriving from early whole‐tree harvesting, and residues from final cuttings. Three commercially practiced BPCs were compared. By the additional extraction of biomass for heat production, the employment increased by 0.6 person‐years 1000 m?3 solid wood chips, while there was a decrease in the costs and greenhouse gases emitted per unit of heat consumed. Furthermore this practice did not only add positive socio‐economic but also positive environmental impacts on sustainability, particularly on the greenhouse gas balance and the energy efficiency ratio (input to output ratio along the BPC), which was determined to be 1–24. Potential drawbacks, on the other hand, include decreasing nutrient returns to the soil and the associated potential reduction in future stand productivity. Fertilization might be needed to maintain sustainable forest growth on poor sites. 相似文献
4.
The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most LCAs found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy. 相似文献
5.
Jane C. Bare David W. Pennington Helias A. Udo de Haes 《The International Journal of Life Cycle Assessment》1999,4(5):299-306
On November 29 – 30, 1998 in Brussels, an international workshop was held to discuss Life Cycle Impact Assessment (LCIA) Sophistication. Approximately 50 LCA experts attended the workshop from North America, Europe, and Asia. Prominent practitioners and researchers were invited to present a critical review of the associated factors, including the current limitations of available impact assessment methodologies and a comparison of the alternatives in the context of uncertainty. Each set of presentations, organised into three sessions, was followed by a discussion session to encourage international discourse with a view to improving the understanding of these crucial issues. The discussions were focused around small working groups of LCA practitioners and researchers, selected to include a balance of representatives from industry, government and academia. This workshop provided the first opportunity for International experts to address the issues related to LCIA Sophistication in an open format. Among the topics addressed were: 1) the inclusion or exclusion of backgrounds and thresholds in LCIA, 2) the necessity and practicality regarding the sophistication of the uncertainty analysis, 3) the implications of allowing impact categories to be assessed at “midpoint” vs. at “endpoint” level, 4) the difficulty of assessing and capturing the comprehensiveness of the environmental health impact category, 5) the implications of cultural/philosophical views, 6) the meaning of terms like science-based and environmental relevance in the coming ISO LCIA standard, 7) the dichotomy of striving for consistency while allowing the incorporation of state-of-the-art research, 8) the role of various types of uncertainty analysis, and 9) the role of supporting environmental analyses (e.g., risk assessments). Many of these topics addressed the need for increased sophistication in LCIA, but recognised the conflict this might have in terms of the comprehensiveness and holistic character of LCA, and LCIA in particular. The participants concluded that the exchange of ideas in this format was extremely valuable and would like to plan successive International workshops on related themes. 相似文献
6.
Javier Uche Amaya Martínez-Gracia Uriel Carmona 《The International Journal of Life Cycle Assessment》2014,19(3):688-704
Purpose
In this paper, the combined life cycle assessment of the water supply alternatives and the water use in a water-stressed watershed in Spain (the Segura) is presented. Although it is a dry area, agriculture and tourism are very profitable sectors with high water demands. Thus, external water supply alternatives including water transfers or desalination partly balance the reduced natural water availability to cover the existing water demands.Methods
In order to integrate both the impact of water supply alternatives and water use, the ReCiPe method was used to assess the water supply alternatives at the endpoint approach with the three specific damage categories: human health, ecosystem diversity and damage to resources availability. At the same time, the water use impact was calculated and grouped in the same categories. Firstly, one average cubic metre of water at the user's gate in the Segura Basin area was taken as the functional unit. As irrigation and drinking water constitute the principal water uses, it was considered that to separately analyse 1 m3 used for irrigation and 1 m3 destined to drinking purposes could provide interesting information. Then, these units were also considered as functional units. Then, three additional hypothetical scenarios were introduced: two of them defined by a strong variability in rainfall and the third by a sudden diminution of water transferred from a neighbouring basin.Results and discussion
Regarding the facilities to provide 1 m3 at user's gate in the Segura Basin, results showed that the seawater desalination plants obtained the highest score for all the three considered damage categories, followed by the Tajo–Segura water transfer, the groundwater, the local surface waters and the water reuse. In relation to the water use impact, the damage to ecosystems diversity was very representative with respect to the one coming from water supply infrastructures because irrigation constituted 85 % of the total demand.Conclusions
The diversification of water supply alternatives within a region considerably increases any environmental impact, primarily stemming from the additional required infrastructures, and frequently from the use of external water sources for their uses. Thus, users and policy makers should be aware of the costs that a guaranteed water supply entails. In water-scarce territories, the use of external solutions such as desalination or water transfer either increase the environmental impact due to their high energy consumption or they are limited by existing climate variability. Therefore, they cannot be considered as the definite solution, which would be a balance between renewable sources and existing demands. 相似文献7.
Stefanie Hellweg Georg Geisler 《The International Journal of Life Cycle Assessment》2003,8(5):310-312
Pesticides are biologically active substances that are directly released to the environment during the use phase of their
life cycle. Pesticides are widely used and play an important role in the production of vital goods such as food, feedstuffs
and cotton. The Discussion Forum 19 focused on the impact assessment of pesticides applied in agriculture. The discussion
forum started with three talks about new approaches to estimate pesticide emissions and to assess their fate in the environment.
The following short presentations illustrated the application of some of these methods in case studies and highlighted the
problem of data availability. The last two presentations provided insight into risk assessment models used for pesticide registration
from a company perspective and from the viewpoint of the authorities. 相似文献
8.
9.
Forte Ana Dourado Fernando Mota André Neto Belmira Gama Miguel Ferreira Eugénio Campos 《The International Journal of Life Cycle Assessment》2021,26(5):864-878
The International Journal of Life Cycle Assessment - Bacterial cellulose (BC), obtained by fermentation, is an innovative and promising material with a broad spectrum of potential applications.... 相似文献
11.
Daesoo Kim Greg Thoma Darin Nutter Franco Milani Rick Ulrich Greg Norris 《The International Journal of Life Cycle Assessment》2013,18(5):1019-1035
Purpose
A life cycle assessment was conducted to determine a baseline for environmental impacts of cheddar and mozzarella cheese consumption. Product loss/waste, as well as consumer transport and storage, is included. The study scope was from cradle-to-grave with particular emphasis on unit operations under the control of typical cheese-processing plants.Methods
SimaPro© 7.3 (PRé Consultants, The Netherlands, 2013) was used as the primary modeling software. The ecoinvent life cycle inventory database was used for background unit processes (Frischknecht and Rebitzer, J Cleaner Prod 13(13–14):1337–1343, 2005), modified to incorporate US electricity (EarthShift 2012). Operational data was collected from 17 cheese-manufacturing plants representing 24 % of mozzarella production and 38 % of cheddar production in the USA. Incoming raw milk, cream, or dry milk solids were allocated to coproducts by mass of milk solids. Plant-level engineering assessments of allocation fractions were adopted for major inputs such as electricity, natural gas, and chemicals. Revenue-based allocation was applied for the remaining in-plant processes.Results and discussion
Greenhouse gas (GHG) emissions are of significant interest. For cheddar, as sold at retail (63.2 % milk solids), the carbon footprint using the IPCC 2007 factors is 8.60 kg CO2e/kg cheese consumed with a 95 % confidence interval (CI) of 5.86–12.2 kg CO2e/kg. For mozzarella, as sold at retail (51.4 % milk solids), the carbon footprint is 7.28 kg CO2e/kg mozzarella consumed, with a 95 % CI of 5.13–9.89 kg CO2e/kg. Normalization of the results based on the IMPACT 2002+ life cycle impact assessment (LCIA) framework suggests that nutrient emissions from both the farm and manufacturing facility wastewater treatment represent the most significant relative impacts across multiple environmental midpoint indicators. Raw milk is the major contributor to most impact categories; thus, efforts to reduce milk/cheese loss across the supply chain are important.Conclusions
On-farm mitigation efforts around enteric methane, manure management, phosphorus and nitrogen runoff, and pesticides used on crops and livestock can also significantly reduce impacts. Water-related impacts such as depletion and eutrophication can be considered resource management issues—specifically of water quantity and nutrients. Thus, all opportunities for water conservation should be evaluated, and cheese manufacturers, while not having direct control over crop irrigation, the largest water consumption activity, can investigate the water use efficiency of the milk they procure. The regionalized normalization, based on annual US per capita cheese consumption, showed that eutrophication represents the largest relative impact driven by phosphorus runoff from agricultural fields and emissions associated with whey-processing wastewater. Therefore, incorporating best practices around phosphorous and nitrogen management could yield improvements. 相似文献12.
13.
Ivan Muñoz Cristina Rodríguez Dominique Gillet Bruno M. Moerschbacher 《The International Journal of Life Cycle Assessment》2018,23(5):1151-1160
Purpose
The aim of this article is to present the first life cycle assessment of chitosan production based on data from two real producers located in India and Europe. The goal of the life cycle assessment (LCA) was to understand the main hot spots in the two supply chains, which are substantially different in terms of raw materials and production locations.Methods
The LCA is based on consequential modelling principles, whereby allocation is avoided by means of substitution, and market mixes include only flexible, i.e. non-constrained suppliers. The product system is cradle to gate and includes the production of raw materials, namely waste shells from snow crab and shrimp in Canada and India, respectively, the processing of these in China and India and the manufacture of chitosan in Europe and India. Primary data for chitin and chitosan production were obtained from the actual producers, whereas raw material acquisition as well as waste management activities were based on literature sources. The effects of indirect land use change (iLUC) were also included. Impact assessment was carried out at midpoint level by means of the recommended methods in the International Life Cycle Data (ILCD) handbook.Results and discussion
In the Indian supply chain, the production of chemicals (HCl and NaOH) appears as an important hot spot. The use of shrimp shells as raw material affects the market for animal feed, resulting in a credit in many impact indicators, especially in water use. The use of protein waste as fertilizer is also an important source of greenhouse-gas and ammonia emissions. In the European supply chain, energy use is the key driver for environmental impacts, namely heat production based on coal in China and electricity production in China and Europe. The use of crab shells as raw material avoids the composting process they would be otherwise subject to, leading to a saving in composting emissions, especially ammonia. In the Indian supply chain, the effect of iLUC is relevant, whereas in the European one, it is negligible.Conclusions
Even though we assessed two products from the same family, the results show that they have very different environmental profiles, reflecting their substantially different supply chains in terms of raw material (shrimp shells vs. crab shells), production locations (locally produced vs. a global supply chain involving three continents) and the different applications (general-purpose chitosan vs. chitosan for the medical sector).14.
Tun Thant Zin Bonnet Sebastien Gheewala Shabbir H. 《The International Journal of Life Cycle Assessment》2020,25(11):2106-2121
The International Journal of Life Cycle Assessment - Cement manufacturing is associated with global and local environmental issues. Many studies have employed life cycle assessment (LCA) to... 相似文献
15.
16.
17.
Jinglan Hong Yilu Chen Juan Liu Xiaotian Ma Congcong Qi Liping Ye 《The International Journal of Life Cycle Assessment》2018,23(9):1814-1824
Purpose
China is the world’s largest producer and consumer of refined and reclaimed copper because of the rapid economic and industrial development of this country. However, only a few studies have analyzed the environmental impact of China’s copper industry. The current study analyzes the life cycle environmental impact of copper production in China.Methods
A life cycle impact assessment using the ReCiPe method was conducted to estimate the environmental impact of refined and reclaimed copper production in China. Uncertainty analysis was also performed based on the Monte-Carlo simulation.Results and discussion
The environmental impact of refined copper was higher than that of reclaimed copper in almost all categories except for human toxicity because of the direct atmospheric arsenic emission during the copper recycling stage. The overall environmental impact for the refined copper production was mainly attributed to metal depletion, freshwater ecotoxicity, marine ecotoxicity, and water depletion potential impact. By contrast, that for the reclaimed copper production was mainly caused by human toxicity impact.Conclusions
Results show that the reclaimed copper scenario had approximately 59 to 99% more environmental benefits than those of the refined copper scenario in most key categories except for human toxicity, in which a similar environmental burden was observed between both scenarios. The key factors that reduce the overall environmental impact for China’s copper industry include decreasing direct heavy metal emissions in air and water, increasing the national recycling rate of copper, improving electricity consumption efficiency, replacing coal with clean energy sources for electricity production, and optimizing the efficiency of copper ore mining and consumption.18.
Rita C. Schenck 《The International Journal of Life Cycle Assessment》2001,6(2):114-117
Background The primary purpose of environmental assessment is to protect biological systems. Data collected over the last several decades
indicates that the greatest impacts on biological resources derive from physical changes in land use. However, to date there
is no consensus on indicators of land use that could be applicable worldwide at all scales. This has hampered the assessment
of land use in the context of LCA.
Objectives The Institute for Environmental Research and Education and its partner Defenders of Wildlife have begun an effort to develop
the necessary consensus.
Methods In July 2000, they held a workshop attended by a diverse group of interested parties and experts to develop a preliminary
list of life cycle indicators for land use impacts.
Results Their preliminary list of impact indicators includes: protection of priority habitats/species; soil characteristics: soil
health; proximity to & protection of high priority vegetative communities; interface between water and terrestrial habitats/buffer
zones; assimilative capacity of water and land; hydrological function; percent coverage of invasive species within protected
areas; road density; percent native-dominated vegetation; restoration of native vegetation; adoption of Best Management Practices
linked to biodiversity objectives; distribution (patchiness; evenness, etc.); and connectivity of native habitat.
Conclusion The list of indicators conforms well to other efforts in developing indicators. There appears to be convergence among experts
in the field and in related fields on the appropriate things to measure.
Future Prospects These indicators are currently being tested in the United States. Further workshops and testing is planned towards developing
internationally recognized indicators for land use. 相似文献
19.
This paper analyses the potential environmental impacts and economic viability of producing biodiesel from microalgae grown in ponds. A comparative Life Cycle Assessment (LCA) study of a notional production system designed for Australian conditions was conducted to compare biodiesel production from algae (with three different scenarios for carbon dioxide supplementation and two different production rates) with canola and ULS (ultra-low sulfur) diesel. Comparisons of GHG (greenhouse gas) emissions (g CO2-e/t km) and costs (¢/t km) are given. Algae GHG emissions (−27.6 to 18.2) compare very favourably with canola (35.9) and ULS diesel (81.2). Costs are not so favourable, with algae ranging from 2.2 to 4.8, compared with canola (4.2) and ULS diesel (3.8). This highlights the need for a high production rate to make algal biodiesel economically attractive. 相似文献
20.
Dorota Burchart-Korol Jerzy Korol Krystyna Czaplicka-Kolarz 《The International Journal of Life Cycle Assessment》2016,21(10):1391-1403