首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The purpose of this work was to develop an indicator framework for the environmental sustainability benchmarking of products produced by the metallurgical industry. Sustainability differentiation has become an important issue for companies throughout the value chain. Differentiation is sometimes not attainable, due to the use of average data, lack of comparative data, certain issues being overshadowed by others, and a very narrow palette of indicators dominating the current sustainability assessments. There is a need for detailed and credible analyses, which show the current status and point out where improvements can be made. The indicator framework is developed to give a comprehensive picture of eco-efficiency, to provide methods that enable relevant comparisons as well as the tools for communicating the results. In this way, the methodology presented in this study aims to make differentiation easier and thus aid companies in driving the development toward more sustainable solutions.

Methods

The framework is based on the existing indicator framework Gaia Biorefiner, which is primarily intended for bio-based products. In this work, the framework was further developed for application in the metallurgical industry. The indicator framework is built by first looking at the issues, which are critical to the environment and global challenges seen today and which the activities of the metallurgical industry may have an impact on. Based on these issues, suitable indicators are chosen if they exist and built if they do not. The idea is that all indicators in a group form a whole, showing areas of innovation while refraining from aggregating and weighting, which often compromise a comprehensive and objective view. Both qualitative and quantitative indicators are included. The indicators are constructed following the criteria set by the EU and OECD for building indicators. Each indicator further has a benchmark. The rules for building the benchmark are connected to the indicators. Suitable data sources and criteria for the benchmark and the indicators are gathered from literature, publicly available databases, and commercial LCA software. The use of simulation tools for attaining more reliable data is also studied.

Results and discussion

The result is a visual framework consisting of ten indicator groups with one to five indicators each, totaling up to 31 indicators. These are visualized in a sustainability indicator “flower.” The flower can be further opened up to study each indicator and the reasons behind the results. The sustainability benchmark follows a methodology that is based on utilization of baseline data and sustainability criteria or limits. A simulation approach was included in the methodology to address the problem with data scarcity and data reliability. The status of the environment, current production technologies, location-specific issues, and process-specific issues all affect the result, and the aim of finding relevant comparisons that will support sustainability differentiation is answered by a scalable scoping system.

Conclusions

A new framework and its concise visualization has been built for assessing the eco-efficiency of products from the metallurgical industry, in a way that aims to answer the needs of the industry. Since there is a baseline, against which each indicator can be benchmarked, a sustainability indicator “flower” can be derived, one of the key innovations of this methodology. This approach goes beyond the usual quantification, as it is also scalable and linked to technology and its fundamental parameters. In part 2, a case study “A case study from the copper industry” tests and illustrates the methodology.
  相似文献   

2.

Purpose

Used cooking oil (UCO) is a domestic waste generated as the result of cooking and frying food with vegetable oil. The purpose of this study is to compare the sustainability of three domestic UCO collection systems: through schools (SCH), door-to-door (DTD), and through urban collection centres (UCC), to determine which systems should be promoted for the collection of UCO in cities in Mediterranean countries.

Methods

The present paper uses the recent life cycle sustainability assessment (LCSA) methodology. LCSA is the combination of life cycle assessment (LCA), life cycle costing, and social life cycle assessment (S-LCA).

Results and discussion

Of the three UCO collection systems compared, the results show that UCC presents the best values for sustainability assessment, followed by DTD and finally SCH system, although there are no substantial differences between DTD and SCH. UCC has the best environmental and economic performance but not for social component. DTD and SCH present suitable values for social performance but not for the environmental and economic components.

Conclusions

The environmental component improves when the collection points are near to citizens’ homes. Depending on the vehicle used in the collection process, the management costs and efficiency can improve. UCO collection systems that carry out different kind of waste (such as UCC) are more sustainable than those that collect only one type of waste. Regarding the methodology used in this paper, the sustainability assessment proposed is suitable for use in decision making to analyse processes, products or services, even so in social assessment an approach is needed to quantify the indicators. Defining units for sustainability quantification is a difficult task because not all social indicators are quantifiable and comparable; some need to be adapted, raising the subjectivity of the analysis. Research into S-LCA and LCSA is recent; more research is needed in order to improve the methodology.  相似文献   

3.

Background, aim and scope

A characterisation model based on multi-criteria indicators has been developed for each of four impact categories representing the labour rights according to the conventions of the International Labour Organisation (ILO) covering: forced labour, discrimination, restrictions of freedom of association and collective bargaining and child labour (Dreyer et al., Int J Life Cycle Assess, 2010a, in press). These impact categories are considered by the authors to be among the obligatory impact categories in a Social LCA. The characterisation models combine information about the way a company manages its behaviour towards some of its important stakeholders, its employees, with information about the geographical location and branch of industry of the company and the risk of violations of these workers' rights inherent in the setting of the company. The result is an indicator score which for each impact category represents the risk that violations occur in the company. In order to test the feasibility and relevance of the developed methodology, it is tested on real cases.

Materials and methods

The developed characterisation models are applied to six cases representing individual manufacturing companies from three different continents. Five of the case companies are manufacturing companies while the sixth is a knowledge company. The application involves scoring the management efforts of the case company in a multi-criteria scorecard and translating the scores into an aggregated performance score, which represents the effort of the management in order to prevent violations of the workers' rights to occur in the company. The company performance score is multiplied by a contextual adjustment score which reflects the risk of violations taking place in the context (in terms of geographical location or industrial branch or sector) of the company. The resulting indicator score represents the risk that violations take place of the labour right represented by the impact category.

Results

The social impact characterisation is performed for each of the six case studies using the methodology earlier developed. The procedure and outcome are documented through all the intermediary results shown for all four obligatory impact categories for each of the six case studies.

Discussion

The results are judged against the risk which was observed during visits and interviews at each of the six case companies, and their realism and relevance are discussed. They are found to be satisfactory for all four impact categories for the manufacturing companies, but there are some problems for two of the impact categories in the case company which represents knowledge work, and it is discussed how these problems may be addressed through change of the underlying scorecard or the way in which the scoring is translated into a company performance score.

Conclusions

It is concluded that it is feasible to perform a characterisation of the impacts related to the four obligatory impact categories representing the labour rights according to the conventions of the ILO covering: forced labour, discrimination, restrictions of freedom of association and collective bargaining and child labour. When compared with the observed situation in the companies, the results are also found to be relevant and realistic.

Recommendations and perspectives

The proposed characterisation method is rather time-consuming and cannot realistically be applied to all companies in the product system. It must therefore be combined with less time-requiring screening methods which can help identify the key companies in the life cycle for which a detailed analysis is required. The possibility to apply country- or industry sector-based information is discussed, and while it is found useful to identify low-risk companies and eliminate them from more detailed studies, the ability of the screening methods to discriminate between companies located in medium and high-risk contexts is questionable.  相似文献   

4.

Purpose

Whereas the business evolution of environmental sustainability metrics has advanced significantly over the past decade, social sustainability at product level is still relatively immature. Research continues to support the front runners on organisational sustainability, while workable solutions at product level have not yet been addressed sufficiently. Triggered by this imbalance, a group of experts from large companies decided to join forces, initiating the Roundtable for Product Social Metrics.

Methods

Starting in early 2013, this group of companies aimed to (i) consolidate principles for product social sustainability assessment and harmonise approaches, (ii) align with other global initiatives and share with other companies and (iii) develop solutions for cross-cutting implementation issues. In order to be able to produce a comprehensive method for social impact assessment that provides enough flexibility for individual requirements, the Roundtable developed a method based on the approaches of the participant companies and external references such as the UNEP/SETAC Guidelines for Social Life-Cycle Assessment of Products and corporate level standards. Guiding principles were defined for the development of the method.

Results and discussion

The results of the first two phases of the Roundtable for Product Social Metrics are documented in a handbook, which proposes a practical method for organisations to assess the social impacts of a product or a service along its life cycle. The handbook outlines an aligned method for social impact assessment at a product level offering two approaches: quantitative and scale based. The method was developed to allow reasoned assessment of overall performance by including social topics and performance indicators that reflect positive and negative impacts of the product on three stakeholder groups: workers, consumers and local communities. Nineteen social topics are proposed, together with their individual performance indicators, including detailed definitions. Application examples and recommendations for the communication of results are also included in the handbook.

Conclusions

The method can be applied in numerous scenarios, from understanding improvement opportunities and steering product development in different stages, to providing support for decision making and external communications. However, the method still has further potential for improvement, inter alia that the proposed indicators are not fully applicable to small farmers, SMEs and the self-employed, as well as that the indicators are mainly at inventory level. Furthermore, the proposed method is strongly dependent on the availability of data.
  相似文献   

5.

Purpose

The construction industry has considerable impacts on the environment, economy, and society. Although quantifying and analyzing the sustainability implications of the built environment is of great importance, it has not been studied sufficiently. Therefore, the overarching goal of this study is to quantify the overall environmental, economic, and social impacts of the U.S. construction sectors using an economic input–output-based sustainability assessment framework.

Methods

In this research, the commodity-by-industry supply and use tables published by the U.S. Bureau of Economic Analysis, as part of the International System of National Accounts, are merged with a range of environmental, economic, and social metrics to develop a comprehensive sustainability assessment framework for the U.S. construction industry. After determining these sustainability assessment metrics, the direct and indirect sustainability impacts of U.S construction sectors have been analyzed from a triple bottom-line perspective.

Results

When analyzing the total sustainability impacts by each construction sector, “Residential Permanent Single and Multi-Family Structures" and "Other Non-residential Structures" are found to have the highest environmental, economic, and social impacts in comparison with other construction sectors. The analysis results also show that indirect suppliers of construction sectors have the largest sustainability impacts compared with on-site activities. For example, for all U.S. construction sectors, on-site construction processes are found to be responsible for less than 5 % of total water consumption, whereas about 95 % of total water use can be attributed to indirect suppliers. In addition, Scope 3 emissions are responsible for the highest carbon emissions compared with Scopes 1 and 2. Therefore, using narrowly defined system boundaries by ignoring supply chain-related impacts can result in underestimation of triple bottom-line sustainability impacts of the U.S. construction industry.

Conclusions

Life cycle assessment (LCA) studies that consider all dimensions of sustainability impacts of civil infrastructures are still limited, and the current research is an important attempt to analyze the triple bottom-line sustainability impacts of the U.S. construction sectors in a holistic way. We believe that this comprehensive sustainability assessment model will complement previous LCA studies on resource consumption of U.S. construction sectors by evaluating them not only from environmental standpoint, but also from economic and social perspectives.  相似文献   

6.

Introduction

The European Commission is supporting the development of the International Reference Life Cycle Data System (ILCD). This consists primarily of the ILCD Handbook and the ILCD Data Network. This paper gives an insight into the scientific positions of business, governments, consultants, academics, and others that were expressed at this public consultation workshop.

Workshop focus

The workshop focused on four of the topics of the main guidance documents of the ILCD Handbook: (1) general guidance on life cycle assessment (LCA); (2) guidance for generic and average life cycle inventory (LCI) data sets; (3) requirements for environmental impact assessment methods, models and indicators for LCA; and (4) review schemes for LCA.

Workshop participation

This consultation workshop was attended by more than 120 participants during the 4 days of the workshop. Representatives came from 23 countries, from both within and outside the European Union.

Workshop structure

Approximately half of the participants were from business associations or individual companies. Another 20% were governmental representatives. Others came predominantly from consultancies and academia.

Results

This public consultation workshop provided valuable inputs into the overall ILCD Handbook developments as well as for further development. This paper focuses on some of the main scientific issues that were raised.  相似文献   

7.

Purpose

The paper provides a late report from the United Nations Environment Program (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative workshop “Life Cycle Impact Assessment (LCIA)—where we are, trends, and next steps;” it embeds this report into recent development with regard to the envisaged development of global guidance on environmental life cycle impact assessment indicators and related methodologies.

Methods

The document is the output of the UNEP/SETAC Life Cycle Initiative’s workshop on “Life Cycle Impact Assessment—where we are, trends, and next steps.” The presentations and discussions held during the workshop reviewed the first two phases of the Life Cycle Initiative and provided an overview of current LCIA activities being conducted by the Initiative, governments and academia, as well as corporate approaches. The outcomes of the workshop are reflected in light of the implementation of the strategy for Phase 3 of the Life Cycle Initiative.

Results

The range of views provided during the workshop indicated different user needs, with regards to, amongst other things, the required complexity of the LCIA methodology, associated costs, and the selection of LCIA categories depending on environmental priorities. The workshop’s results signified a number of potential focus areas for Phase 3 of the Initiative, including capacity building efforts concerning LCIA in developing countries and emerging economies, the preparation of training materials on LCIA, the production of global guidance on LCIA, and the potential development of a broader sustainability indicators framework.

Conclusions

These suggestions have been taken into account in the strategy for Phase 3 of the Life Cycle Initiative in two flagship projects, one on global capability development on life cycle approaches and the other on global guidance on environmental life cycle impact assessment indicators. In the context of the latter project, first activities are being organized and planned. Moreover, UNEP has included the recommendations in its Rio + 20 Voluntary Commitments: UNEP and SETAC through the UNEP/SETAC Life Cycle Initiative commit to facilitate improved access to good quality life cycle data and databases as well as expanded use of key environmental indicators that allows the measurement and monitoring of progress towards the environmental sustainability of selected product chains.  相似文献   

8.

Purpose

Simulation plays a critical role in the design of products, materials, and manufacturing processes. However, there are gaps in the simulation tools used by industry to provide reliable results from which effective decisions can be made about environmental impacts at different stages of product life cycle. A holistic and systems approach to predicting impacts via sustainable manufacturing planning and simulation (SMPS) is presented in an effort to incorporate sustainability aspects across a product life cycle.

Methods

Increasingly, simulation is replacing physical tests to ensure product reliability and quality, thereby facilitating steady reductions in design and manufacturing cycles. For SMPS, we propose to extend an earlier framework developed in the Systems Integration for Manufacturing Applications (SIMA) program at the National Institute of Standards and Technology. SMPS framework has four phases, viz. design product, engineer manufacturing, engineer production system, and produce products. Each phase has its inputs, outputs, phase level activities, and sustainability-related data, metrics and tools.

Results and discussion

An automotive manufacturing scenario that highlights the potential of utilizing SMPS framework to facilitate decision making across different phases of product life cycle is presented. Various research opportunities are discussed for the SMPS framework and corresponding information models.

Conclusions

The SMPS framework built on the SIMA model has potential in aiding sustainable product development.  相似文献   

9.

Purpose

Political interest in the future availability of natural resources has spiked recently, with new documents from the European Union, United Nations Environment Programme and the US National Research Council assessing the supply situation of key raw materials. As resource efficiency is considered a key element for sustainable development, suitable methods to address sustainability of resource use are increasingly needed. Life cycle thinking and assessment may play a principal role here. Nonetheless, the extent to which current life cycle impact assessment methods are capable to answer to resource sustainability challenges is widely debated. The aim of this paper is to present key elements of the ongoing discussion, contributing to the future development of more robust and comprehensive methods for evaluating resources in the life cycle assessment (LCA) context.

Methods

We systematically review current impact assessment methods dealing with resources, identifying areas of improvement. Three key issues for sustainability assessment of resources are examined: renewability, recyclability and criticality; this is complemented by a cross-comparison of methodological features and completeness of resource coverage.

Results and discussion

The approach of LCA to resource depletion is characterised by a lack of consensus on methodology and on the relative ranking of resource depletion impacts as can be seen from a comparison of characterisation factors. The examined models yield vastly different characterisations of the impacts from resource depletion and show gaps in the number and types of resources covered.

Conclusions

Key areas of improvement are identified and discussed. Firstly, biotic resources and their renewal rates have so far received relatively little regard within LCA; secondly, the debate on critical raw materials and the opportunity of introducing criticality within LCA is controversial and requires further effort for a conciliating vision and indicators. We identify points where current methods can be expanded to accommodate these issues and cover a wider range of natural resources.  相似文献   

10.

Purpose

Life cycle assessment (LCA) studies allow understanding all relevant processes and environmental impacts involved in the life cycle of products. However, in order to fully assess their sustainability, these studies should be complemented by economic (LCC) and societal analyses. In this context, the present work aims at assessing all costs (internal and external) and the environmental performance associated to the full life cycle of specific engineering products. These products are lighting columns for roadway illumination made with three different materials: a glass fibre reinforced polymer composite, steel and aluminium.

Methods

The LCA/LCC integrated methodology used was based in a ??cradle-to-grave?? assessment which considers the raw materials production, manufacture, on-site installation, use and maintenance, dismantlement and end-of-life (EoL) of the lighting columns. The fossil fuels environmental impact category was selected as the key environmental impact indicator to perform the integrated environmental and cost analysis.

Results

The potential total costs obtained for the full life cycle of the lighting columns demonstrated that the one made in steel performs globally worse than those made in composite or aluminium. Although the three systems present very similar internal costs, the steel column has higher external costs in the use phase that contribute for its higher total cost. This column has very high costs associated to safety features, since it constitutes a significant risk to the life of individuals. The raw material and column production stages are the main contributors for the total internal life cycle costs. The EoL treatment is a revenue source in all systems because it generates energy (in the case of the composite incineration) or materials (in the case of metal recycling). The composite and aluminium lighting columns present similar ??cradle-to-grave?? life cycle total cost. However, until the dismantlement phase, the aluminium column presents the highest environmental impact, whereas in the EoL treatment phase this scenario is reversed. The ??cradle-to-grave?? life cycle potential total cost and the environmental impact (fossil fuels) indicator of the steel lighting column are higher than those of the other columns.

Conclusions

Even though the uncertainties in the LCC are larger if external costs are included, their consideration when modelling the economic performance of engineering products increases the probability of developing a more sustainable solution from a societal perspective.  相似文献   

11.
12.

Purpose

This study aims to develop a new framework of social life cycle impact assessment (SLCIA) method based on the United Nations Environment Program/Society of Environmental Toxicology and Chemistry (UNEP/SETAC) Guidelines for analyzing the social impact in Taiwan, particularly in the electronics industry.

Methods

After reviewing the literature on social life cycle assessment (SLCA), we analyzed existing case studies and developed SLCIA methods based on the UNEP/SETAC Guidelines. We thereafter identified stakeholders, subcategories, and indicators in accordance with the current status of SLCA case studies and opinions from ten experts in the Taiwanese electronics industry. Both quantitative and semi-quantitative indicators were subsequently proposed to assess the social impact of workers in the Taiwanese electronics sector. Each indicator was given the score of 1 to 5 by classifying the social impact percentage of nine scales. To formulate an analytic framework for SLCIA, the weighting values of each subcategory and indicator were determined using the consistent fuzzy preference relations (CFPR) method.

Results and discussion

Seven subcategories and 19 qualitative and quantitative indicators of worker stakeholders for the electronics sector were identified based on the UNEP/SETAC Guidelines. A score of 1 to 5 is assigned to each quantitative indicator by classifying the social impact percentage of nine scales. The data obtained from companies for each quantitative indicator were subsequently transformed into social impact percentage in terms of the statistical data on social situations at the country or industry level. With regard to semi-quantitative indicators, three implementation levels of management efforts on social performance within five elements were identified. The CFPR method was then employed to determine the weights of each indicator by ten experts. Results indicated that preventing forced work practices, protecting children from having to work, and providing minimum and fair wages for workers are the three most important indicators for assessing social impact.

Conclusions

A new SLCIA method that incorporates both quantitative and semi-quantitative indicators was proposed for assessing social impact in the electronics sector in Taiwan. Nine quantitative indicators can be easily organized using available social data from government statistics as performance reference points (PRPs) to determine the social impact exerted by companies. The relative weights were determined to allow for an impact assessment and thus solve the limitation of their currently assumed equal weights. The proposed framework is examined to analyze the social impact of three production sites for semiconductor packaging and manufacturing in Taiwan.
  相似文献   

13.

Purpose

Sustainability Science (SS) is considered an emerging discipline, applicative and solution-oriented whose aim is to handle environmental, social and economic issues in light of cultural, historic and institutional perspectives. The challenges of the discipline are not only related to better identifying the problems affecting sustainability but to the actual transition towards solutions adopting an integrated, comprehensive and participatory approach. This requires the definition of a common scientific paradigm in which integration and interaction amongst sectorial disciplines is of paramount relevance. In this context, life cycle thinking (LCT) and, in particular, life cycle-based methodologies and life cycle sustainability assessment (LCSA) may play a crucial role. The paper illustrates the main challenges posed to sustainability assessment methodologies and related methods in terms of ontology, epistemology and methodology of SS. The aims of the analysis are twofold: (1) to identify the main features of methodologies for sustainability assessment and (2) to present key aspects for the development of robust and comprehensive sustainability assessment.

Methods

The current debate on SS addressing ontological, epistemological and methodological aspects has been reviewed, leading to the proposal of a conceptual framework for SS. In addition, a meta-review of recent studies on sustainability assessment methodologies and methods, focusing those life cycle based, supports the discussion on the main challenges for a comprehensive and robust approach to sustainability assessment. Starting from the results of the meta-review, we identified specific features of sustainable development-oriented methods: firstly, highlighting key issues towards robust methods for SS and, secondly, capitalising on the findings of each review’s paper. For each issue, a recommendation towards a robust sustainability assessment method is given. Existing limitations of sectorial academic inquiries and proposal for better integration and mainstreaming of SS are the key points under discussion.

Discussion

In the reviewed papers, LCT and its basic principles are acknowledged as relevant for sustainability assessment. Nevertheless, LCT is not considered as a reference approach in which other methods could also find a place. This aspect has to be further explored, addressing the lack of multi-disciplinary exchange and putting the mainstreaming of LCT as a priority on the agenda of both life cycle assessment and sustainability assessment experts. Crucial issues for further developing sustainability assessment methodologies and methods have been identified and can be summarised as follows: holistic and system wide approaches, shift from multi- towards trans-disciplinarity; multi-scale (temporal and geographical) perspectives; and better involvement and participation of stakeholders.

Conclusions

Those are also the main challenges posed to LCSA in terms of progress of ontology, epistemology and methodology in line with the progress of SS. The life cycle-based methodologies should be broadened from comparing alternatives and avoiding negative impacts, to also proactively enhancing positive impacts, and towards the achievement of sustainability goals.  相似文献   

14.

Purpose

Along with climate change-related issues, improved water management is recognized as one of the major challenges to sustainability. However, there are still no commonly accepted methods for measuring sustainability of water uses, resulting in a recent proliferation of water footprint methodologies. The Water Impact Index presented in this paper aims to integrate the issues of volume, scarcity and quality into a single indicator to assess the reduction of available water for the environment induced by freshwater uses for human activities.

Methods

The Water Impact Index follows life cycle thinking principles. For each unit process, a volumetric water balance is performed; water flows crossing the boundaries between the techno-sphere and environment are multiplied by a water quality index and a water scarcity index. The methodology is illustrated on the current municipal wastewater management system of Milan (Italy). The Water Impact Index is combined with carbon footprint to introduce multi-impact thinking to decision makers. The Water Impact Index is further compared to results obtained using a set of three life cycle impact indicators related to water, from the ReCiPe life cycle impact assessment (LCIA) methodology.

Results and discussion

Onsite water use is the main contribution to the Water Impact Index for both wastewater management schemes. The release of better quality water is the main driver in favour of the scenario including a wastewater treatment plant, while the energy and chemicals consumed for the treatment increase the indirect water footprint and carbon footprint. Results obtained with the three midpoint indicators depict similar tendencies to the Water Impact Index.

Conclusions

This paper presents a simplified single-indicator approach for water footprinting, integrating volume, scarcity and quality issues, representing an initial step toward a better understanding and assessment of the environmental impacts of human activities on water resources. The wastewater treatment plant reduces the Water Impact Index of the wastewater management system. These results are consistent with the profile of the three midpoint indicators related to water from ReCiPe.  相似文献   

15.

Purpose

Sustainability assessments of buildings using the life cycle approach have become more and more common. This includes the assessment of the environmental performance of buildings. However, the influence of the construction products used for the fabric, the finishing, and the technical building equipment of buildings has hardly been described in literature. For this reason, we evaluated the influence of the technical building equipment and its impact on the environment for different residential buildings.

Materials and methods

Five residential buildings were evaluated by applying the methodology of life cycle assessment (LCA) (ISO14040) expressed using quantitative assessment categories according to prEN15978.

Results and discussion

Results show that the optimization of energy performance has already reached a high level in Austria, so that the overall potential for possible improvements is quite low. Especially in low-energy and passive?Chouse-standard residential buildings, the limits for energy optimization in the use phase have mostly been achieved. In contrast to this, the integrated LCA (iLCA) findings attribute a high optimization potential to the construction products used for the technical building equipment as well as to the building fabric and finishing. Additionally, the passive house shows the lowest contribution of the technical building equipment on the overall LCA results.

Conclusions

The iLCA findings suggest that it is recommended to include the technical building equipment for future assessments of the environmental performance of buildings. It is also suggested to use a broad number of environmental indicators for building LCA.  相似文献   

16.

Background, aim, and scope

Methodology development should reflect demands from the intended users: what are the needs of the user group and what is feasible in terms of requirements involving data and work? Mapping these questions of relevance and feasibility is thus a way to facilitate a higher degree of relevance of the developed methodology. For the emerging area of social life cycle assessment (SLCA), several different potential user groups may be identified. This article addresses the issues of relevance and feasibility of SLCA from a company perspective through a series of interviews among potential company users.

Methods and materials

The empirical basis for the survey is a series of eight semi-structured interviews with larger Danish companies, all of which potentially have the capacity and will to use comprehensive social assessment methodologies. SLCA is not yet a well-defined methodology, but still it is possible to outline several potential applications of SLCA and the tasks a company must be able to perform in order to make use of these applications. The interviews focus on the companies’ interest in these potential applications and their ability and willingness to undertake the required work.

Results

Based on these interviews, three hypotheses are developed relating to these companies’ potential use of SLCA, viz.: (1) needs which may be supported by SLCA relate to three different applications, being comparative assertions, use stage assessments, and weighting of social impacts; (2) assessing the full life cycle of a product or service is rarely possible for the companies; and (3) companies see their social responsibility in the product chain as broader than dictated by the product perspective of SLCA. Trends for these three hypotheses developed on the basis of the opinions of the interviewees. Also, factors influencing the generalization of the results to cover other industries are analyzed.

Discussion

Full comparative assertions as known from environmental life cycle assessment (LCA) may be difficult in a company context due to several difficulties in assessing the full life cycle. Furthermore, the comparative assertion may potentially be hampered by differences in how companies typically allocate responsibility along the product chain and how it is done in SLCA, creating a boundary setting issue. These problems do, only in a limited degree, apply for both the use stage assessment and the tool for weighting social issues.

Conclusion

Despite these difficulties, it is concluded that all three applications of SLCA may be possible for the interviewed companies, but it seems the tendency is to demand assessment tools with very limited life cycle perspective, which to some extent deviate from the original thought behind the LCA tools as being holistic decision aid tools.

Perspectives

It is advocated that there is a need to focus more on questions regarding the relevance and feasibility of SLCA from several different perspectives to direct the future methodology development.  相似文献   

17.

Purpose

Pulp and paper manufacturing constitutes one of the largest industry segments in term of water and energy usage and total discharges to the environment. More than many other industries, however, this industry plays a key role in sustainable development because its most important raw material, wood fiber, is renewable Dias and Houtman (Environ Prog 23(4):347?C357, 2004). Actually, even if the communication is dominated by electronic media, paper-based communication has a role to play due to its unique practical and aesthetic qualities. This research aims to assess the environmental impact of advertising folders produced with different papers and distributed by a system of Italian consumers?? cooperatives in order to indicate the possible options of improvement and to assess the CO2 (eq) emitted during the entire life cycle.

Methods

Life cycle assessment (LCA) was performed from cradle-to-grave considering paper production, transport from paper mill to printing site, printing, distribution, and disposal. Data for the study were directly collected from specific companies and completed on the basis of literature information. The analysis was conducted using the SimaPro 7.1.5 software and IMPACT 2002+ method to assess all its environmental impact and damage categories.

Results and discussion

LCA analysis indicates that the higher environmental impact is mainly due to paper production and printing processes. The main operations which generate the major impact in the paper production stage are related to the direct or indirect fossil energy use, the production of additives for bleaching operations, and the collection and selection of waste paper. Printing causes relevant impacts for the electricity and ink production and for the aluminum plates used in the offset printing. Moreover, the use of paper with low quantity of additives and small amount of primary fibers causes a reduction of the environmental load of 13.94?%. The major global warming potential value was found for advertising folders made with little amount of mechanical pulp which slightly contributes to the absorption of CO2.

Conclusions

The analysis pointed out the relevance of the paper production phase and of the printing step within the advertising folders life cycle and allowed to detect the other critical stages of the life cycle. Paper composition greatly affects the environmental impact of the advertising folders?? life cycle.  相似文献   

18.

Purpose

The main goal of the paper is to carry out the first implementation of sustainability assessment of the assembly step of photovoltaic (PV) modules production by Life Cycle Sustainability Assessment (LCSA) and the development of the Life Cycle Sustainability Dashboard (LCSD), in order to compare LCSA results of different PV modules. The applicability and practicability of the LCSD is reported thanks to a case study. The results show that LCSA can be considered a valuable tool to support decision-making processes that involve different stakeholders with different knowledge and background.

Method

The sustainability performance of the production step of Italian and German polycrystalline silicon modules is assessed using the LCSD. The LCSD is an application oriented to the presentation of an LCSA study. LCSA comprises life cycle assessment (LCA), life cycle costing and social LCA (S-LCA). The primary data collected for the German module are related to two different years, and this led to the evaluation of three different scenarios: a German 2008 module, a German 2009 module, and an Italian 2008 module.

Results and discussion

According to the LCA results based on Ecoindicator 99, the German module for example has lower values of land use [1.77 potential disappeared fractions (PDF) m2/year] and acidification (3.61 PDF m2/year) than the Italian one (land use 1.99 PDF m2/year, acidification 3.83 PDF m2/year). However, the German module has higher global warming potential [4.5E?C05 disability-adjusted life years (DALY)] than the Italian one [3.00E?05 DALY]. The economic costs of the German module are lower than the Italian one, e.g. the cost of electricity per FU for the German module is 0.12??/m2 compared to the Italian 0.85??/m2. The S-LCA results show significant differences between German module 2008 and 2009 that represent respectively the best and the worst overall social performances of the three considered scenarios compared by LCSD. The aggregate LCSD results show that the German module 2008 has the best overall sustainability performance and a score of 665 points out of 1,000 (and a colour scale of light green). The Italian module 2008 has the worst overall sustainability performance with a score of 404 points, while the German module 2009 is in the middle with 524 points.

Conclusions

The LCSA and LCSD methodologies represent an applicable framework as a tool for supporting decision-making processes which consider sustainable production and consumption. However, there are still challenges for a meaningful application, particularly the questions of the selection of social LCA indicators and how to weigh sets for the LCSD.  相似文献   

19.

Purpose

The goal of this study is to develop an estimate of water use and consumption in automotive manufacturing to enhance the data quality of vehicle life cycle assessments that include life cycle water impacts. A benchmark is developed to compare water resources across manufacturing and nonproduction-related manufacturing processes, including an indication whether indirect water consumption due to electricity generation is significant.

Methods

Data from 12 original equipment manufacturers’ (OEM’s) sustainability reports are examined for the years 2006 to 2010. Distinctions are made between “water use” and “water consumption.” These factors are divided by total reported production to develop use and consumption values in cubic meter/vehicle for comparison. Additionally, total energy consumption is converted to indirect water consumption based on the water consumed in the generation of electricity for the electricity grid mix.

Results and discussion

Excluding outliers, average direct water use is 5.20 and 5.95 m3/vehicle for manufacturing and company-wide activities, respectively, with corresponding standard deviations of 1.42 and 1.20 m3/vehicle. Average direct water consumption was calculated to be 1.25 and 4.29 m3/vehicle for manufacturing and company-wide activities, respectively, with corresponding standard deviations of 0.52 and 1.56 m3/vehicle. Average indirect water consumption due to electricity consumption is found to be 2.21 m3/vehicle. Variability arises through different understandings on the words “consumption” and “use,” reporting continuity between years and in classification of data as it relates to manufacturing, nonmanufacturing, or company-wide activities.

Conclusions

These water values show that needs vary widely across OEMs. Additionally, the magnitude of the indirect water consumption results indicates that OEMs should focus on both indirect and direct water consumption to reduce their overall water footprint. The results also highlight the potential for significance and variability in indirect water consumption, in particular for “cradle-to-gate” type of impact assessments, dependent on electricity generation water consumption assumptions. It is hoped that with the introduction of water reporting standards like the International Organization of Standardization 14046, manufacturers will provide a more comprehensive summary of their water use and consumption in the future.  相似文献   

20.

Background

The measurement of healthcare provider performance is becoming more widespread. Physicians have been guarded about performance measurement, in part because the methodology for comparative measurement of care quality is underdeveloped. Comprehensive quality improvement will require comprehensive measurement, implying the aggregation of multiple quality metrics into composite indicators.

Objective

To present a conceptual framework to develop comprehensive, robust, and transparent composite indicators of pediatric care quality, and to highlight aspects specific to quality measurement in children.

Methods

We reviewed the scientific literature on composite indicator development, health systems, and quality measurement in the pediatric healthcare setting. Frameworks were selected for explicitness and applicability to a hospital-based measurement system.

Results

We synthesized various frameworks into a comprehensive model for the development of composite indicators of quality of care. Among its key premises, the model proposes identifying structural, process, and outcome metrics for each of the Institute of Medicine's six domains of quality (safety, effectiveness, efficiency, patient-centeredness, timeliness, and equity) and presents a step-by-step framework for embedding the quality of care measurement model into composite indicator development.

Conclusions

The framework presented offers researchers an explicit path to composite indicator development. Without a scientifically robust and comprehensive approach to measurement of the quality of healthcare, performance measurement will ultimately fail to achieve its quality improvement goals.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号